Directional splitting of Gaussian density in non-linear random variable transformation

Directional splitting of Gaussian density in non-linear random variable transformation

For access to this article, please select a purchase option:

Buy eFirst article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Transformation of a random variable is a common need in a design of many algorithms in signal processing, automatic control, and fault detection. Typically, the design is tied to an assumption on a probability density function of the random variable, often in the form of the Gaussian distribution. The assumption may be, however, difficult to be met in algorithms involving non-linear transformation of the random variable. This paper focuses on techniques capable to ensure validity of the Gaussian assumption of the non-linearly transformed Gaussian variable by approximating the to-be-transformed random variable distribution by a Gaussian mixture (GM) distribution. The stress is laid on an analysis and selection of design parameters of the approximate GM distribution to minimise the error imposed by the non-linear transformation such as the location and number of the GM terms. A special attention is devoted to the definition of the novel GM splitting directions based on the measures of non-Gaussianity. The proposed splitting directions are analysed and illustrated in numerical simulations.

Related content

This is a required field
Please enter a valid email address