Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Robust adaptive filtering for extended target tracking with heavy-tailed noise in clutter

A robust adaptive filter is proposed by using the variational Bayesian (VB) inference to extended target tracking with heavy-tailed noise in clutter. An explicit distribution is used to describe the non-Gaussian heavy-tailed noise based on Student's t-distribution. The need for arbitrary decisions is then eliminated, and the robust operation is provided which is less sensitive to extreme observation. Moreover, an approximate measurement update using the analytical techniques of VB methods is derived to approximate the posterior states at each time step. To obtain a more accurate result, clutter estimation is also integrated considering the uncertainty of target tracking in a cluttered environment. The performance of the proposed algorithm is demonstrated with simulated data.

References

    1. 1)
      • 20. Deng, G.: ‘Partial update and sparse adaptive filters’, IET Signal Process., 2007, 1, (1), pp. 917.
    2. 2)
      • 5. Granström, K., Lundquist, C., Orguner, U.: ‘Extended target tracking using a Gaussian-mixture PHD filter’, IEEE Trans. Aerosp. Electron. Syst., 2012, 48, (4), pp. 32683286.
    3. 3)
      • 22. Bishop, C. M.: ‘Pattern recognition and machine learning (information science and statistics)’ (Springer-Verlag Press, New York, 2006).
    4. 4)
      • 7. Shi, J., Li, Y., Qi, G.: ‘Extended target tracking filter with intermittent observations’, IET Signal Process., 2016, 10, (6), pp. 592602.
    5. 5)
      • 2. Ristic, B., Arulampalam, S., Gordon, N.: ‘Beyond the Kalman filter: particle filters for tracking applications’ (Artech House Press, Boston, 2004).
    6. 6)
      • 14. Huang, Y., Zhang, Y., Li, N., et al: ‘A robust Student's t based cubature filter’. Proc. 19th Int. Conf. on Information Fusion, Heidelberg, July 2016, pp. 916.
    7. 7)
      • 1. Waxman, M.J., Drummond, O.E.: ‘A bibliography of cluster (group) tracking’, Proc. Int. Conf. SPIE. Signal Data Process, 2004, 5428, (1), pp. 551560.
    8. 8)
      • 18. Faul, A.C., Tipping, M.E.: ‘A variational approach to robust regression’, Proc. Int. Conf. on Artificial Neural Networks, Austria, 2001, pp. 95102.
    9. 9)
      • 16. McLachlan, G. J., Peel, D.: ‘Finite mixture models’ (Wiley Press, Hoboken, NJ, 2000).
    10. 10)
      • 19. Orguner, U.: ‘A variational measurement update for extended target tracking with random matrices’, IEEE Trans. Signal Process., 2012, 60, (7), pp. 38273834.
    11. 11)
      • 12. Ting, J., Theodorou, E., Schaal, S.: ‘Learning an outlier-robust Kalman filter’. Proc. Eur. Conf. Mach. Learn., Warsaw, Poland, 2007, pp. 17.
    12. 12)
      • 17. Yu, L., Wei, C.: ‘Compressive sensing for cluster structured sparse signals: variational Bayes approach’, IET Signal Process., 2016, 10, (7), pp. 770779.
    13. 13)
      • 8. Koch, J.W.: ‘Bayesian approach to extended object and cluster tracking using random matrices’, IEEE Trans. Aerosp. Electron. Syst., 2008, 44, (3), pp. 10421059.
    14. 14)
      • 24. Feldmann, M., Koch, W.: ‘Comments on “Bayesian approach to extended object and cluster tracking using random matrices”’, IEEE Trans. Aerosp. Electron. Syst., 2012, 48, (2), pp. 16871693.
    15. 15)
      • 3. Koch, W., Van, K.G.: ‘Multiple hypothesis track maintenance with possibly unresolved measurements’, IEEE Trans. Aerosp. Electron. Syst., 1997, 33, (3), pp. 883892.
    16. 16)
      • 9. Feldmann, M., Franken, D., Koch, W.: ‘Tracking of extended objects and group targets using random matrices’, IEEE Trans. Signal Process., 2011, 59, (4), pp. 14091420.
    17. 17)
      • 6. Baum, M., Hanebeck, U.D.: ‘Extended object tracking with random hypersurface models’, IEEE Trans. Aerosp. Electron. Syst., 2014, 50, (1), pp. 149159.
    18. 18)
      • 4. Gilholm, K., Salmond, D.: ‘Spatial distribution model for tracking extended objects’, IEE Proc. Radar Sonar Navig., 2005, 152, (5), pp. 364371.
    19. 19)
      • 11. Kotz, S., Nadarajah, S.: ‘Multivariate t-distributions and their applications’ (Cambridge University Press, Cambridge, UK, 2004).
    20. 20)
      • 21. Beal, M.: ‘Variational algorithms for approximate Bayesian inference’. PhD thesis, Gatsby Computational Neuroscience Unit, University College London, 2003.
    21. 21)
      • 23. Gupta, A. K., Nagar, D. K.: ‘Matrix variate distributions’ (FL Chapman Hall/CRC Press, Boca Raton, 1999).
    22. 22)
      • 10. Lan, J., Li, X.R.: ‘Tracking of maneuvering non-ellipsoidal extended object or target group using random matrix’, IEEE Trans. Signal Process., 2014, 62, (9), pp. 24502463.
    23. 23)
      • 13. Huang, Y., Zhang, Y., Li, N., et al: ‘Robust Student's t based nonlinear filter and smoother’, IEEE Trans. Aerosp. Electron. Syst., 2016, 52, (5), pp. 25862596.
    24. 24)
      • 15. Huang, Y., Zhang, Y., Wu, Z., et al: ‘A novel robust Student's t based Kalman filter’, IEEE Trans. Aerosp. Electron. Syst., 2017, 53, (3), pp. 15451554.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2017.0249
Loading

Related content

content/journals/10.1049/iet-spr.2017.0249
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address