access icon free Accurate integer-order rational approximation of fractional-order low-pass Butterworth filter using a metaheuristic optimisation approach

This study presents a new approach to design fractional-order low-pass Butterworth filters (FOLPBF) in terms of integer-order rational approximations meeting an accurate magnitude response. A parameter-independent, metaheuristic optimisation algorithm called colliding bodies optimisation (CBO) is used for this purpose. The CBO-based optimisation routine determines the optimal values of the coefficients for the proposed integer-order models for the (1 + α), where, 0 < α < 1, order FOLPBFs. The performance of the proposed filter is examined concerning the passband and the stopband characteristics, solution quality robustness, and the convergence rate. The generic nature of the proposed design approach is also demonstrated. The roll-off characteristics of the proposed higher orders of FOLPBFs exhibit accurate stopband attenuation behaviour. The proposed designs also achieve the best magnitude responses as compared with state-of-the-art designs published in the recent literature. The proposed models can be practically implemented without using any fractance devices.

Inspec keywords: approximation theory; optimisation; convergence of numerical methods; low-pass filters; band-pass filters; Butterworth filters

Other keywords: stopband characteristics; colliding bodies optimisation; accurate stopband attenuation behaviour; solution quality robustness; accurate integer-order rational approximation; parameter-independent optimisation algorithm; CBO-based optimisation routine; metaheuristic optimisation approach; integer-order models; FOLPBF; accurate magnitude response; fractional-order low-pass Butterworth filters; passband characteristics; convergence rate

Subjects: Interpolation and function approximation (numerical analysis); Optimisation techniques; Filtering methods in signal processing; Interpolation and function approximation (numerical analysis); Signal processing theory; Optimisation techniques

References

    1. 1)
      • 10. Gupta, D., Lammersfeld, C., Vashi, P., et al: ‘Bioelectrical impedance phase angle as a prognostic indicator in breast cancer’, BMC Cancer, 2008, 8, pp. 249256.
    2. 2)
      • 26. Gonzalez, E.A., Dorcak, L., Monje, C.A., et al: ‘Conceptual design of a selectable fractional-order differentiator for industrial applications’, Fract. Calc. Appl. Anal., 2014, 17, (3), pp. 697716.
    3. 3)
      • 14. Radwan, A.G., Soliman, A.M., Elwakil, A.S.: ‘First-order filters generalized to the fractional domain’, J. Circuits Syst. Comput., 2008, 17, (1), pp. 5566.
    4. 4)
      • 31. Kaveh, A., Mahdavi, V.R.: ‘Colliding bodies optimization method for optimum design of truss structures with continuous variables’, Adv. Eng. Softw., 2014, 70, pp. 112.
    5. 5)
      • 3. Mahata, S., Saha, S.K., Kar, R., et al: ‘Optimal and accurate design of fractional order digital differentiator – an evolutionary approach’, IET Signal Process., 2017, 11, (2), pp. 181196.
    6. 6)
      • 16. Freeborn, T.J., Maundy, B., Elwakil, A.S.: ‘Towards the realization of fractional step filters’. IEEE Int. Symp. Circuits Syst. (ISCAS), 2010, pp. 10371040.
    7. 7)
      • 4. Wu, J.-X., Li, C.-M., Ho, Y.-R., et al: ‘Peripheral arterial stenosis screening with a fractional-order integrator and info-gap decision-making’, IEEE Sensors J., 2016, 16, pp. 26912700.
    8. 8)
      • 30. Kaveh, A., Mahdavi, V.R.: ‘Colliding bodies optimization: extensions and applications’ (Springer, Switzerland, 2015, 1st edn.).
    9. 9)
      • 20. Acharya, A., Das, S., Pan, I., et al: ‘Extending the concept of analogue butterworth filter for fractional order systems’, Signal Process., 2014, 94, pp. 409420.
    10. 10)
      • 25. Valsa, J., Vlach, L.: ‘RC models of a constant phase element’, Int. J. Circuit Theor. Appl., 2013, 41, (1), pp. 5967.
    11. 11)
      • 15. Radwan, A.G., Soliman, A.M., Elwakil, A.S.: ‘On the generalization of second-order filters to the fractional-order domain’, J. Circuits Syst. Comput., 2009, 18, (2), pp. 361386.
    12. 12)
      • 5. Li, H., Luo, Y., Chen, Y.Q.: ‘A fractional-order proportional and derivative (FOPD) motion controller: tuning rule and experiments’, IEEE Trans. Control Syst. Tech., 2010, 18, (2), pp. 516520.
    13. 13)
      • 2. Mahata, S., Saha, S.K., Kar, R., et al: ‘Optimal design of wideband infinite impulse response fractional order digital integrators using colliding bodies optimisation algorithm’, IET Signal Process.., 2016, 10, (9), pp. 11351156.
    14. 14)
      • 28. Mahata, S., Kar, R., Mandal, D., et al: ‘Efficient design of IIR fractional order digital integrators using craziness based particle swarm optimization’. Proc. IEEE Region 10 Conf. (TENCON), Singapore, 22–25 November 2016, pp. 11751179.
    15. 15)
      • 23. Biswas, K., Sen, S., Dutta, P.: ‘Realization of a constant phase element and its performance study in a differentiator circuit’, IEEE Trans. Circuits Syst.-II, 2006, 53, (9), pp. 802806.
    16. 16)
      • 6. Shamim, A., Radwan, A.G., Salama, K.N.: ‘Fractional smith chart theory and application’, IEEE Microwave Wireless Compon. Lett., 2011, 21, (3), pp. 117119.
    17. 17)
      • 32. Mahata, S., Saha, S.K., Kar, R., et al: ‘Enhanced colliding bodies optimisation-based optimal design of wideband digital integrators and differentiators’, Int. J. Bio-Inspired Computation, 2017, 9, (3), pp. 165181.
    18. 18)
      • 7. Radwan, A.G., Elwakil, A.S., Soliman, A.M.: ‘Fractional-order sinusoidal oscillator: design procedure and practical applications’, IEEE Trans. Circuits Syst., 2008, 55, (7), pp. 20512063.
    19. 19)
      • 22. Freeborn, T.J.: ‘Comparison of (1 + α) fractional-order transfer functions to approximate lowpass butterworth magnitude responses’, Circuits Syst. Signal Process., 2016, 35, (6), pp. 19832002.
    20. 20)
      • 21. Psychalinos, C., Tsirimokou, G., Elwakil, A.S.: ‘Switched-capacitor fractional-step Butterworth filter design’, Circuits Syst. Signal Process., 2016, 35, (4), pp. 13771393.
    21. 21)
      • 29. Kaveh, A., Mahdavi, V.R.: ‘Colliding bodies optimization: a novel metaheuristic method’, Comput. Struct., 2014, 139, pp. 1827.
    22. 22)
      • 13. Rabiner, L.R., Gold, B.: ‘Theory and application of digital signal processing’ (Prentice-Hall Inc., New Jersey, 1975).
    23. 23)
      • 34. Bosman, P.A.N.: ‘On gradients and hybrid evolutionary algorithms for real-valued multiobjective optimization’, IEEE Trans. Evol. Comput., 2012, 16, (1), pp. 5169.
    24. 24)
      • 27. Mahata, S., Saha, S.K., Kar, R., et al: ‘Optimal design of wideband digital integrators and differentiators using hybrid flower pollination algorithm’, Soft Comput.., 2017, doi. 10.1007/s00500-017-2595-6.
    25. 25)
      • 18. Maundy, B., Elwakil, A.S., Freeborn, T.J.: ‘On the practical realization of higher-order filters with fractional stepping’, Signal Process., 2011, 91, (3), pp. 484491.
    26. 26)
      • 33. Pal, P.S., Kar, R., Mandal, D., et al: ‘An efficient identification approach for stable and unstable nonlinear systems using colliding bodies optimization algorithm’, ISA Trans.., 2015, 59, pp. 85104.
    27. 27)
      • 19. Ali, A.S., Radwan, A.G., Soliman, A.M.: ‘Fractional order butterworth filter: active and passive realizations’, IEEE J. Emerg. Sel. Top. Circuits Syst., 2013, 3, (3), pp. 346354.
    28. 28)
      • 35. Schaumann, R., Van Valkenburg, M.E.: ‘Design of analog filters’ (Oxford University Press, New York, 2001).
    29. 29)
      • 17. Freeborn, T.J., Maundy, B., Elwakil, A.S.: ‘Field programmable analogue array implementation of fractional step filters’, IET Circuits Devices Syst., 2010, 4, (6), pp. 514524.
    30. 30)
      • 11. Jesus, I., Tenreiro, A., Cunha, J.: ‘Fractional electrical impedances in botanical elements’, J. Vib. Control, 2008, 14, pp. 13891402.
    31. 31)
      • 8. Ortigueira, M.D.: ‘An introduction to the fractional continuous-time linear systems: the 21st century systems’, IEEE Circuits Syst. Mag., 2008, 8, pp. 1926.
    32. 32)
      • 12. Butterworth, S.: ‘Theory of filter amplifier’, Exp. Wireless Eng., 1930, 7, pp. 536541.
    33. 33)
      • 1. Oldham, K.B., Spanier, J.: ‘The fractional calculus’ (Academic Press, New York, 1974).
    34. 34)
      • 24. Krishna, M.S., Das, S., Biswas, K., et al: ‘Fabrication of a fractional-order capacitor with desired specifications: a study on process identification and characterization’, IEEE Trans. Electron. Devices, 2011, 58, (11), pp. 40674073.
    35. 35)
      • 9. Benmalek, M., Charef, A.: ‘Digital fractional order operators for R-wave detection in electrocardiogram signal’, IET Signal Process., 2009, 3, (5), pp. 381391.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2017.0229
Loading

Related content

content/journals/10.1049/iet-spr.2017.0229
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading