access icon free Hybrid anti-jamming approach for kinematic global positioning system receivers

In this study, a new hybrid anti-jamming system is proposed for kinematic global positioning system receivers. The proposed system employs a short-time Fourier transform (STFT)-based pre-correlation block to guarantee that the receiver can acquire at least four satellites in jamming environments. It also employs a discrete wavelet transform-based denoising block in the navigation unit of the receiver to increase positioning accuracy, which was degraded due to the jamming and also due to the movement of the receiver. Simulation results demonstrate that the proposed system has a better anti-jamming performance compared with previous methods. They show that the average positioning accuracies of the proposed system are 47, 45, and 43% better than the standard STFT-based mitigation method, wavelet-packets transform (WPT)-assisted filter, and WPT-based hybrid system, respectively.

Inspec keywords: correlation methods; radio receivers; signal denoising; jamming; Global Positioning System; Fourier transforms; discrete wavelet transforms

Other keywords: kinematic Global Positioning System receivers; standard STFT-based mitigation method; hybrid anti-jamming approach; receiver navigation unit; WPT-based hybrid system; jamming environments; WPT-assisted filter; short-time Fourier transform-based pre-correlation block; discrete wavelet transform-based denoising block; wavelet-packets transform

Subjects: Radionavigation and direction finding; Signal processing and detection; Integral transforms; Electromagnetic compatibility and interference

References

    1. 1)
      • 17. Mosavi, M.R., Pashaian, M., Rezaei, M.J., et al: ‘Jamming mitigation in global positioning system receivers using wavelet packet coefficients thresholding’, IET Signal Process., 2015, 9, (5), pp. 457464.
    2. 2)
      • 10. Subburaj, K., Bhatara, S., Tangudu, J., et al: ‘Spur mitigation in high-sensitivity GNSS receivers’, IEEE Trans. Circuits Syst. II, 2014, 61, (2), pp. 100104.
    3. 3)
      • 18. Chien, Y.R., Chen, P.Y., Fang, S.H.: ‘Novel anti-jamming algorithm for GNSS receivers using wavelet-packet-transform-based adaptive predictors’, IEICE Trans. Fundam. Electron., 2017, 100-A, (2), pp. 602610.
    4. 4)
      • 2. Borio, D.: ‘GNSS acquisition in the presence of continuous wave interference’, IEEE Trans. Aerosp. Electron. Syst., 2010, 46, (1), pp. 4760.
    5. 5)
      • 24. Mao, W.L., Tsao, H.W., Chang, F.R.: ‘Intelligent GPS receiver for robust carrier phase tracking in kinematic environments’, IEE Proc., Radar Sonar Navig., 2004, 151, (3), pp. 171180.
    6. 6)
      • 12. Moghaddasi, M.S., Mosavi, M.R., Rezaei, M.J.: ‘A new method for continuous wave interference mitigation in single-frequency GPS receivers’, Wirel. Pers. Commun., 2016, 90, (3), pp. 15631578.
    7. 7)
      • 3. Higgins, T., Webster, T., Shackelford, A.K.: ‘Mitigating interference via spatial and spectral nulling’, IET Radar Sonar Navig., 2014, 8, (2), pp. 8493.
    8. 8)
      • 6. Azami, H., Mosavi, M.R., Sanei, S.: ‘Classification of GPS satellites using improved back propagation training algorithms’, Wirel. Pers. Commun., 2013, 71, (2), pp. 789803.
    9. 9)
      • 22. Kang, C.H., Kim, S.Y., Park, C.G.: ‘Global navigation satellite system interference tracking and mitigation based on an adaptive fading Kalman filter’, IET Radar Sonar Navig., 2015, 9, (8), pp. 10301039.
    10. 10)
      • 9. Dai, W., Qiao, C., Wang, Y., et al: ‘Improved anti-jamming scheme for direct sequence spread-spectrum receivers’, Electron. Lett., 2016, 52, (2), pp. 161163.
    11. 11)
      • 4. Mosavi, M.R., Rezaei, M.J., Pashaian, M., et al: ‘A fast and accurate anti-jamming system based on wavelet packet transform for GPS receivers’, GPS Solut., 2017, 21, (2), pp. 415426.
    12. 12)
      • 11. Chien, Y.R.: ‘Design of GPS anti-jamming systems using adaptive notch filters’, IEEE Syst. J., 2015, 9, (2), p. 451.
    13. 13)
      • 20. Lamare, R.C., Sampaio-Neto, R.: ‘Adaptive space-time reduced-rank estimation based on diversity-combined decimation and interpolation applied to interference suppression in CDMA systems’, IET Signal Process., 2009, 3, (2), pp. 150163.
    14. 14)
      • 27. Mosavi, M.R., Azarbad, M.R.: ‘Multipath error mitigation based on wavelet transform in L1 GPS receivers for kinematic applications’, AEU-Int. J. Electron. Commun., 2013, 67, (10), pp. 875884.
    15. 15)
      • 23. Bek, M.K., Shaheen, E.M., Elgamel, S.A.: ‘Mathematical analyses of pulse interference signal on post-correlation carrier-to-noise ratio for the global positioning system receivers’, IET Radar Sonar Navig., 2015, 9, (3), pp. 266275.
    16. 16)
      • 15. Rezaei, M.J., Abedi, M., Mosavi, M.R.: ‘New GPS anti-jamming system based on multiple short-time Fourier transform’, IET Radar Sonar Nav., 2016, 10, (4), pp. 807815.
    17. 17)
      • 19. Chen, P.Y., Chien, Y.R., Tsao, H.W.: ‘Chirp-like jamming mitigation for GPS receivers using wavelet-packet-transform-assisted adaptive filters’. Int. Computer Symp. (ICS), Chiayi, Taiwan, December 2016, pp. 458461.
    18. 18)
      • 26. Chiang, K., Psiaki, M., Powell, S., et al: ‘GPS-based attitude determination for a spinning rocket’, IEEE Trans. Aerosp. Electron. Syst., 2014, 50, (4), pp. 26542663.
    19. 19)
      • 13. Borio, D., Camoriano, L., Savasta, S., et al: ‘Time–frequency excision for GNSS applications’, IEEE Syst. J., 2008, 2, (1), pp. 2737.
    20. 20)
      • 1. Motella, B., Presti, L.L.: ‘Methods of goodness of fit for GNSS interference detection’, IEEE Trans. Aerosp. Electron. Syst., 2014, 50, (3), pp. 16901700.
    21. 21)
      • 21. Li, M., Dempster, A.G., Balaei, A.T., et al: ‘Switchable beam steering/null steering algorithm for CW interference mitigation in GPS C/A code receivers’, IEEE Trans. Aerosp. Electron. Syst., 2011, 47, (3), pp. 15641579.
    22. 22)
      • 25. Mosavi, M.R., Rahemi, N.: ‘Positioning performance analysis using RWLS algorithm based on variance estimation methods’, Aerosp. Sci. Technol., 2015, 42, pp. 8896.
    23. 23)
      • 7. Mao, W.L.: ‘Novel SREKF-based recurrent neural predictor for narrowband/FM interference rejection in GPS’, AEU-Int. J. Electron. Commun., 2008, 62, (3), pp. 216222.
    24. 24)
      • 16. Djukanovic, S., Dakovic, M., Stankovic, L.: ‘Bit error probability approximation for short-time Fourier transform based nonstationary interference excision in DS–SS systems’, Signal Process., 2009, 89, (11), pp. 21782184.
    25. 25)
      • 5. Balaei, A.T., Motella, B., Dempster, A.: ‘A preventative approach to mitigating CW interference in GPS receivers’, GPS Solut., 2008, 12, (3), pp. 199209.
    26. 26)
      • 28. Kaplan, E.D., Hegarty, C.: ‘Understanding GPS: principles and applications’ (Artech House, Boston, MA, 2005, 2nd edn.).
    27. 27)
      • 29. Borre, K.D., Akos, M., Bertelsen, N., et al: ‘A software-defined GPS and Galileo receiver: a single-frequency approach, applied and numerical harmonic analysis’ (Birkhauser, Basel, 2007).
    28. 28)
      • 8. Mosavi, M.R., Shafiee, F.: ‘Narrowband interference suppression for GPS navigation using neural networks’, GPS Solut., 2016, 20, (3), pp. 341351.
    29. 29)
      • 14. Quyang, X., Amin, M.G.: ‘Short-time Fourier transform receiver for non-stationary interference excision in direct sequence spread spectrum communications’, IEEE Trans. Signal Process., 2001, 49, (4), pp. 851863.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2017.0221
Loading

Related content

content/journals/10.1049/iet-spr.2017.0221
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading