access icon free Oblique projection for direction-of-arrival estimation of hybrid completely polarised and partially polarised signals with arbitrary polarimetric array configuration

This study deals with the direction-of-arrival (DOA) estimation problem for hybrid completely polarised (CP) and partially polarised (PP) source signals using arbitrary polarimetric antenna arrays. An oblique projection-based polarisation insensitive direction estimation (OPPIDE) algorithm is proposed by exploiting the spatial-sparsity property of the sources. The OP technique is utilised to provide spatial filters, which are insensitive to the state of polarisation of signals, so that the potential source signals in the spatial domain can be separated later. The DOA estimation is finally implemented by identifying the sources’ spatially sparse structure with the separated signals. Theoretical analysis indicates that the OPPIDE is applicable to any hybrid CP and PP signals, and is independent of special polarimetric array configurations. The effectiveness and superiority of the proposed OPPIDE are substantiated through making performance comparison with the present counterpart algorithms.

Inspec keywords: direction-of-arrival estimation; antenna arrays; spatial filters

Other keywords: partially polarised; PP source signals; CP; spatial filters; DOA estimation problem; spatial sparsity property; OPPIDE algorithm; arbitrary polarimetric array configuration; hybrid completely polarised; oblique projection; arbitrary polarimetric antenna arrays; direction-of-arrival estimation; partially polarised signals; oblique projection-based polarisation insensitive direction estimation

Subjects: Filtering methods in signal processing; Antenna arrays

References

    1. 1)
      • 38. Costa, M., Koivunen, V.: ‘Application of manifold separation to polarimetric Capon beamformer and source tracking’, IEEE Trans. Signal Process., 2004, 62, (4), pp. 813827.
    2. 2)
      • 42. Hellbourg, G., Weber, R., Capdessus, C., et al: ‘Oblique projection beamforming for RFI mitigation in radio astronomy’. Proc. IEEE Statistical Signal Processing Workshop, Ann Arbor, MI, August 2012, pp. 9396.
    3. 3)
      • 44. Nehorai, A., Paldi, E.: ‘Vector-sensor array processing for electromagnetic source localization’, IEEE Trans. Signal Process., 1994, 42, (2), pp. 376398.
    4. 4)
      • 18. Xu, Y.G., Liu, Z.W., Fu, S.C.: ‘Polarimetric smoothing revisited: applicability to randomly polarized sources and to incomplete electromagnetic vector-sensors’. Proc. Int. Conf. Signal Processing, Beijing, October 2008, pp. 328331.
    5. 5)
      • 29. Weng, Z., Wang, X.: ‘Support recovery in compressive sensing for estimation of direction-of-arrival’. Proc. Asilomar Conf. Signals, Systems and Computers, Pacific Grove, CA, November 2011, pp. 14911495.
    6. 6)
      • 31. Behrens, R.T., Scharf, L.L.: ‘Signal processing applications of oblique projection operators’, IEEE Trans. Signal Process., 1994, 42, (6), pp. 14131424.
    7. 7)
      • 40. Xin, J.M., Zheng, N.N., Sano, A.: ‘Simple and efficient nonparametric method for estimating the number of signals without eigendecomposition’, IEEE Trans. Signal Process., 2007, 55, (4), pp. 14051420.
    8. 8)
      • 25. Tian, Y., Sun, X.Y., Zhao, S.S.: ‘Sparse-reconstruction-based direction of arrival, polarisation and power estimation using a cross-dipole array’, IET Radar Sonar Navig., 2015, 9, (6), pp. 727731.
    9. 9)
      • 6. Wong, K.T., Zoltowski, M.D.: ‘Closed-form direction finding and polarization estimation with arbitrarily spaced electromagnetic vector-sensors at unknown locations’, IEEE Trans. Antennas Propag., 2000, 48, (5), pp. 671681.
    10. 10)
      • 21. Fu, Y.L., Li, H.F., Zhang, Q.H., et al: ‘Block-sparse recovery via redundant block OMP’, Signal Process., 2014, 97, pp. 162171.
    11. 11)
      • 41. Hou, H.J., Mao, X.P., Hong, H., et al: ‘An oblique projection filtering based DOA estimation algorithm without a priori knowledge’. Proc. IEEE Radar Conf., Cincinnati, OH, May 2014, pp. 15.
    12. 12)
      • 19. Yuan, X.: ‘Coherent sources direction finding and polarization estimation with various compositions of spatially spread polarized antenna arrays’, Signal Process., 2014, 102, pp. 265281.
    13. 13)
      • 1. Nordebo, S., Gustafsson, M., Lundback, J.: ‘Fundamental limitations for DOA and polarization estimation with applications in array signal processing’, IEEE Trans. Signal Process., 2006, 54, (10), pp. 40554061.
    14. 14)
      • 11. Ho, K.C., Tan, K.C., Tan, B.T.G.: ‘Efficient method for estimating directions-of-arrival of partially polarized signals with electromagnetic vector sensors’, IEEE Trans. Signal Process., 1997, 45, (10), pp. 24852498.
    15. 15)
      • 33. Mao, X.P., Liu, A.J., Hou, H.J., et al: ‘Oblique projection polarisation filtering for interference suppression in high-frequency surface wave radar’, IET Radar Sonar Navig., 2012, 6, (2), pp. 7180.
    16. 16)
      • 3. Gong, X.F., Liu, Z.W., Xu, Y.G.: ‘Biquaternion cumulant-MUSIC for DOA estimation of noncircular signals’, Signal Process., 2013, 93, (4), pp. 874881.
    17. 17)
      • 32. Boyer, R.: ‘Oblique projection for source estimation in a competitive environment: algorithm and statistical analysis’, Signal Process., 2009, 89, (12), pp. 25472554.
    18. 18)
      • 26. Tian, Y., Xu, H.: ‘DOA, power and polarization angle estimation using sparse signal reconstruction with a COLD array’, Int. J. Electron. Commun., 2015, 69, (11), pp. 16061612.
    19. 19)
      • 17. Rahamim, D., Tabrikian, J., Shavit, R.: ‘Source localization using vector sensor array in a multipath environment’, IEEE Trans. Signal Process., 2004, 52, (11), pp. 30963103.
    20. 20)
      • 4. Wong, K.T., Zoltowski, M.D.: ‘Root-MUSIC-based azimuth-elevation angle-of-arrival estimation with uniformly spaced but arbitrarily oriented velocity hydrophones’, IEEE Trans. Signal Process., 1999, 47, (12), pp. 32503260.
    21. 21)
      • 37. Tao, H., Xin, J., Wang, J., et al: ‘Oblique projection based enumeration of mixed noncoherent and coherent narrowband signals’, IEEE Trans. Signal Process., 2016, 64, (16), pp. 42824295.
    22. 22)
      • 35. Boyer, R., Bouleux, G.: ‘Oblique projections for direction-of-arrival estimation with prior knowledge’, IEEE Trans. Signal Process., 2008, 56, (4), pp. 13741387.
    23. 23)
      • 39. Hochwald, B., Nehorai, A.: ‘Polarimetric modeling and parameter estimation with applications to remote sensing’, IEEE Trans. Signal Process., 1995, 43, (8), pp. 19231935.
    24. 24)
      • 10. Giuli, D.: ‘Polarization diversity in radars’, Proc. IEEE, 1986, 74, (2), pp. 245269.
    25. 25)
      • 22. Eldar, Y.C., Kuppinger, P., Bolcskei, H.: ‘Block-sparse signals: uncertainty relations and efficient recovery’, IEEE Trans. Signal Process., 2010, 58, (6), pp. 30423054.
    26. 26)
      • 30. Tang, G., Nehorai, A.: ‘Performance analysis for sparse support recovery’, IEEE Trans. Inf. Theory, 2010, 56, (3), pp. 13831399.
    27. 27)
      • 2. Ziskind, I., Wax, M.: ‘Maximum likelihood localization of diversely polarized sources by simulated annealing’, IEEE Trans. Antennas Propag., 1990, 38, (7), pp. 11111114.
    28. 28)
      • 5. Costa, M., Richter, A., Koivunen, V.: ‘DOA and polarization estimation for arbitrary array configurations’, IEEE Trans. Signal Process., 2012, 60, (5), pp. 23302343.
    29. 29)
      • 13. Li, J., Stoica, P.: ‘Efficient parameter estimation of partially polarized electromagnetic waves’, IEEE Trans. Signal Process., 1994, 42, (11), pp. 31143125.
    30. 30)
      • 14. He, J., Ahmad, M.O., Swamy, M.N.S.: ‘Near-field localization of partially polarized sources with a cross-dipole array’, IEEE Trans. Aerosp. Electron. Syst., 2013, 49, (2), pp. 857870.
    31. 31)
      • 9. Gong, X.F., Liu, Z.W., Xu, Y.G.: ‘Regularised parallel factor analysis for the estimation of direction-of-arrival and polarisation with a single electromagnetic vector-sensor’, IET Signal Process., 2011, 5, (4), pp. 390396.
    32. 32)
      • 16. Wong, K.T.: ‘Geolocation for partially polarized electromagnetic sources using multiple sparsely and uniformly spaced spatially stretched vector sensors’. Proc. IEEE Int. Symp. Circuits and Systems, Orlando, FL, 1999, pp. 170174.
    33. 33)
      • 34. McCloud, M.L., Scharf, L.L.: ‘A new subspace identification algorithm for high-resolution DOA estimation’, IEEE Trans. Antennas Propag., 2002, 50, (10), pp. 13821390.
    34. 34)
      • 36. Tao, H., Xin, J.M., Wang, J.S., et al: ‘Two-dimensional direction estimation for a mixture of noncoherent and coherent signals’, IEEE Trans. Signal Process., 2015, 63, (2), pp. 318333.
    35. 35)
      • 12. Ho, K.C., Tan, K.C., Nehorai, A.: ‘Estimating directions of arrival of completely and incompletely polarized signals with electromagnetic vector sensors’, IEEE Trans. Signal Process., 1999, 47, (10), pp. 28452852.
    36. 36)
      • 43. Van Veen, B.D., Buckley, K.M.: ‘Beamforming: a versatile approach to spatial filtering’, IEEE ASSP Mag., 1988, 5, (2), pp. 424.
    37. 37)
      • 27. Massa, A., Rocca, P., Oliveri, G.: ‘Compressive sensing in electromagnetics – a review’, IEEE Antennas Propag. Mag., 2015, 57, (1), pp. 224238.
    38. 38)
      • 23. Yuan, M., Lin, Y.: ‘Model selection and estimation in regression with grouped variables’, J. R. Stat. Soc. B, 2006, 68, (1), pp. 4967.
    39. 39)
      • 24. Eldar, Y.C., Mishali, M.: ‘Robust recovery of signals from a structured union of subspaces’, IEEE Trans. Inf. Theory, 2009, 55, (11), pp. 53025316.
    40. 40)
      • 20. Austin, C.D., Moses, R.L., Ash, J.N., et al: ‘On the relation between sparse reconstruction and parameter estimation with model order selection’, IEEE J. Sel. Top. Signal Process., 2010, 4, (3), pp. 560570.
    41. 41)
      • 15. Wang, K., He, J., Shu, T., et al: ‘Localization of mixed completely and partially polarized signals with crossed-dipole sensor arrays’, Sensors, 2015, 15, (12), pp. 3185931868.
    42. 42)
      • 7. Li, J.: ‘Direction and polarization estimation using arrays with small loops and short dipoles’, IEEE Trans. Antennas Propag., 1993, 43, (3), pp. 379387.
    43. 43)
      • 28. Liu, Z.M.: ‘DOA and polarization estimation via signal reconstruction with linear polarization-sensitive arrays’, Chin. J. Aeronaut., 2015, 28, (6), pp. 17181724.
    44. 44)
      • 45. Ziskind, I., Wax, M.: ‘Maximum likelihood localization of multiple sources by alternating projection’, IEEE Trans. Acoust. Speech Signal Process., 1988, 36, (10), pp. 15531560.
    45. 45)
      • 8. Li, J., Stoica, P., Zheng, D.M.: ‘Efficient direction and polarization estimation with a COLD array’, IEEE Trans. Antennas Propag., 1996, 44, (4), pp. 539547.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2017.0096
Loading

Related content

content/journals/10.1049/iet-spr.2017.0096
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading