access icon free Energy-efficient scheme using multiple antennas in secure distributed detection

Here, the authors propose an energy-efficient strategy using multiple antennas for secure distributed detection in wireless sensor networks (WSNs). In multiple access channel, it is possible to communicate between sensors and ally fusion centre with perfect secrecy by an encryption with channel state information (CSI). However, the sensors in an active group may need to constantly report in the encryption as long as the CSI remains unchanged, which deteriorates the energy efficiency in terms of the lifetime of WSN. The authors solve the problem by using random beamforming (e.g. antenna subset modulation). Furthermore, the authors investigate the impact of the number of active antennas on the network lifetime. Through the analysis and simulation, the authors demonstrate that the proposed strategy has a higher energy efficiency than the conventional strategy, while maintaining the same reliability and security.

Inspec keywords: telecommunication network reliability; telecommunication security; active antenna arrays; energy conservation; multi-access systems; cryptography; wireless sensor networks; array signal processing

Other keywords: energy-efficient scheme; secure distributed detection; energy-efficient strategy; active antennas; security; wireless sensor networks; multiple-access channel; antenna subset modulation; CSI; network lifetime; encryption; energy efficiency; random beamforming; reliability; channel state information; WSN lifetime

Subjects: Signal processing and detection; Antenna arrays; Wireless sensor networks; Cryptography; Reliability; Multiple access communication

References

    1. 1)
      • 18. Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: ‘Energy-efficient communication protocol for wireless microsensor networks’. Proc. IEEE Hawaii Int. Conf., Hawaii, US, January 2000, pp. 110.
    2. 2)
      • 21. Hyvärinen, A., Oja, E.: ‘Independent component analysis: algorithms and applications’, Neural Netw., 2000, 13, (4), pp. 411430.
    3. 3)
      • 12. Jeon, H., Choi, J., McLaughlin, S.W., et al: ‘Channel aware encryption and decision fusion for wireless sensor networks’, IEEE Trans. Inf. Forensics Security, 2013, 8, (4), pp. 619625.
    4. 4)
      • 9. Abdelhakim, M., Lightfoot, L.E., Ren, J., et al: ‘Distributed detection in mobile access wireless sensor networks under byzantine attacks’, IEEE Trans. Parallel Distrib. Syst., 2014, 25, (4), pp. 950959.
    5. 5)
      • 14. Wang, D., Bai, B., Chen, W., et al: ‘Secure green communication via untrusted two-way relaying: a physical layer approach’, IEEE Trans. Commun., 2016, 64, (5), pp. 18611874.
    6. 6)
      • 4. Kailkhura, B., Liu, S., Wimalajeewa, T., et al: ‘Measurement matrix design for compressed detection with secrecy guarantees’, IEEE Wirel. Commun. Lett., 2016, 5, (4), pp. 420423.
    7. 7)
      • 11. Choi, J., Ha, J., Jeon, H.: ‘Physical layer security for wireless sensor networks’. Proc. IEEE Int. Symp. Personal Indoor and Mobile Radio Communications (PIMRC), London, UK, September 2013, pp. 16.
    8. 8)
      • 15. Zarrabi, H., Kuhestani, A., Moradikia, M.: ‘EE-RS and PA for untrusted relay network at high signal-to-noise ratio regime’, IET Commun., 2016, 10, (16), pp. 21432148.
    9. 9)
      • 20. Reeb, D., Wolf, M.M.: ‘Tight bound on relative entropy by entropy difference’, IEEE Trans. Inf. Theory, 2015, 61, (3), pp. 14581473.
    10. 10)
      • 5. Soosahabi, R., Naraghi-Pour, M.: ‘Scalable PHY-layer security for distributed detection in wireless sensor networks’, IEEE Trans. Inf. Forensics Security, 2012, 7, (4), pp. 11181126.
    11. 11)
      • 13. Jeon, H., Hwang, D., Choi, J., et al: ‘Secure type-based multiple access’, IEEE Trans. Inf. Forensics Security, 2011, 6, (3), pp. 763774.
    12. 12)
      • 10. Marano, S., Matta, V., Willett, P.K.: ‘Distributed detection with censoring sensors under physical layer secrecy’, IEEE Trans. Signal Process., 2009, 57, (5), pp. 19761986.
    13. 13)
      • 3. Kailkhura, B., Wimalajeewa, T., Sheny, L., et al: ‘Distributed compressive detection with perfect secrecy’. Proc. IEEE Mobile Ad-hoc and Sensor Systems (MASS), Philadelphia, USA, October 2014, pp. 674679.
    14. 14)
      • 8. Marano, S., Matta, V., Tong, L.: ‘Distributed detection in the presence of byzantine attacks’, IEEE Trans. Signal Process., 2009, 57, (1), pp. 1629.
    15. 15)
      • 7. Marano, S., Matta, V., Tong, L.: ‘Distributed detection in the presence of byzantine attack in large wireless sensor networks’. Proc. IEEE Military Communications Conf. (MILCOM), Washington, USA, October 2006, pp. 14.
    16. 16)
      • 16. Barcelo-Llado, J.E., Morell, A., Seco-Granados, G.: ‘Amplify-and-forward compressed sensing as a physical-layer secrecy solution in wireless sensor networks’, IEEE Trans. Inf. Forensics Security, 2014, 9, (5), pp. 839850.
    17. 17)
      • 2. Varshney, P.K.: ‘Distributed Bayesian detection: parallel fusion network’ (Springer, New York, 1997).
    18. 18)
      • 17. Valliappan, N., Lozano, A., Heath, R.W.: ‘Antenna subset modulation for secure millimeter-wave wireless communication’, IEEE Trans. Commun., 2013, 61, (8), pp. 32313245.
    19. 19)
      • 19. Arratia, R., Gordon, L.: ‘Tutorial on large deviations for the binomial distribution’, Bull. Math. Biol., 1989, 51, (1), pp. 125131.
    20. 20)
      • 6. Soosahabi, R., Naraghi-Pour, M., Perkins, D., et al: ‘Optimal probabilistic encryption for secure detection in wireless sensor networks’, IEEE Trans. Inf. Forensics Security, 2014, 9, (3), pp. 375385.
    21. 21)
      • 1. Viswanathan, R., Varshney, P.K.: ‘Distributed detection with multiple sensor part I. Fundamentals’, IEEE Proc., 1997, 85, (1), pp. 5463.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2017.0030
Loading

Related content

content/journals/10.1049/iet-spr.2017.0030
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading