Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Modified Volterra LMS algorithm to fractional order for identification of Hammerstein non-linear system

In this study, a new non-linear recursive mechanism for Volterra least mean square (VLMS) algorithm is proposed in the domain of non-linear adaptive signal processing and control. The proposed adaptive scheme is developed by applying concepts and theories of fractional calculus in weight adaptation structure of standard VLMS approach. The design scheme based on fractional VLMS (F-VLMS) algorithm is applied to parameter estimation problem of non-linear Hammerstein Box-Jenkins system for different noise and step size variations. The adaptive variables of F-VLMS are compared from actual parameters of the system as well as with the results of conventional VLMS for each case to verify its correctness. Comprehensive statistical analyses are conducted based on sufficient large number of independent runs and performance indices in terms of mean square error, variance account for and Nash–Sutcliffe efficiency establish the worth and effectiveness of the scheme.

References

    1. 1)
      • 11. Xu, X., Wang, F., Liu, G., et al: ‘Identification of Hammerstein systems using key-term separation principle, auxiliary model and improved particle swarm optimisation algorithm’, IET Signal Process., 2013, 7, (8), pp. 766773.
    2. 2)
      • 40. Schmidt, C.A., Biagiola, S.I., Cousseau, J.E., et al: ‘Volterra-type models for nonlinear systems identification’, Appl. Math. Model., 2014, 38, (9), pp. 24142421.
    3. 3)
      • 45. Chaudhary, N.I., Raja, M.A.Z.: ‘Identification of Hammerstein nonlinear ARMAX systems using nonlinear adaptive algorithms’, Nonlinear Dyn., 2015, 79, pp. 13851397.
    4. 4)
      • 50. Ding, F., Liu, P.X., Liu, G.: ‘Multiinnovation least-squares identification for system modeling’, IEEE Trans. Syst. Man Cybern. B (Cybern.), 2010, 40, (3), pp. 767778.
    5. 5)
      • 9. Chaudhary, N.I., Zubair, S., Raja, M.A.Z.: ‘Design of momentum LMS adaptive strategy for parameter estimation of Hammerstein controlled autoregressive systems’, Neural Comput. Appl., 2016, pp. 111. doi: 10.1007/s00521-016-2762-1.
    6. 6)
      • 38. Couceiro, M.S., Rocha, R.P., Ferreira, N.F., et al: ‘Introducing the fractional-order Darwinian PSO’, Signal Image Video Process., 2012, 6, (3), pp. 343350.
    7. 7)
      • 30. Ortigueira, M.D.: ‘Introduction to fractional signal processing part 1: continuous-time systems’, IEE Proc. Vis. Image Signal Process., 2000, 147, (1), pp. 6270.
    8. 8)
      • 6. Van der Veen, G.J., van Wingerden, J.W., Fleming, P.A., et al: ‘Global data-driven modeling of wind turbines in the presence of turbulence’, Control Eng. Pract., 2013, 21, (4), pp. 441454.
    9. 9)
      • 36. Shah, S.M.: ‘Riemann–Liouville operator-based fractional normalised least mean square algorithm with application to decision feedback equalisation of multipath channels’, IET Signal Process., 2016, 10, (6), pp. 575582.
    10. 10)
      • 5. Cao, Y-Y., Lin, Z.: ‘Robust stability analysis and fuzzy-scheduling control for nonlinear systems subject to actuator saturation’, IEEE Trans. Fuzzy Syst., 2003, 11, (1), pp. 5767.
    11. 11)
      • 34. Aslam, M.S., Chaudhary, N.I., Raja, M.A.Z.: ‘A sliding-window approximation-based fractional adaptive strategy for Hammerstein nonlinear ARMAX systems’, Nonlinear Dyn., 2017, 87, (1), pp. 519533.
    12. 12)
      • 12. Mao, Y., Ding, F., Liu, Y.: ‘Parameter estimation algorithms for Hammerstein time-delay systems based on the OMP scheme’, IET Signal Process., 2017, 11, (3), pp. 265274.
    13. 13)
      • 44. Raja, M.A.Z., Chaudhary, N.I.: ‘Two-stage fractional least mean square identification algorithm for parameter estimation of CARMA systems’, Signal Process., 2015, 107, pp. 327339.
    14. 14)
      • 21. Machado, J.A.T., Kiryakova, V., Mainardi, F.: ‘Recent history of fractional calculus’, Commun. Nonlinear Sci. Numer. Simul., 2011, 16, (3), pp. 11401153.
    15. 15)
      • 3. Hunter, I.W., Korenberg, M.J.: ‘The identification of nonlinear biological systems: Wiener and Hammerstein cascade models’, Biol. Cybern., 1986, 55, (2), pp. 135144.
    16. 16)
      • 18. Wang, D., Yang, G., Ding, R.: ‘Gradient-based iterative parameter estimation for Box–Jenkins systems’, Comput. Math. Appl., 2010, 60, (5), pp. 12001208.
    17. 17)
      • 22. Malek, H., Dadras, S., Chen, Y.Q.: ‘Fractional order ESR modeling of electrolytic capacitor & fractional order failure prediction with application to predictive maintenance’, IET Power Electron., 2016, 9, pp. 16081613.
    18. 18)
      • 14. Raja, M.A.Z., Shah, A.A., Mehmood, A., et al: ‘Bio-inspired computational heuristics for parameter estimation of nonlinear Hammerstein controlled autoregressive system’, Neural Comput. Appl., 2016, pp. 120. doi: 10.1007/s00521-016-2677-x.
    19. 19)
      • 19. Chen, J., Zhang, Y., Ding, R.: ‘Gradient-based parameter estimation for input nonlinear systems with ARMA noises based on the auxiliary model’, Nonlinear Dyn., 2013, 7, (4), pp. 865871.
    20. 20)
      • 39. Tan, L., Jiang, J.: ‘Adaptive Volterra filters for active control of nonlinear noise processes’, IEEE Trans. Signal Process., 2001, 49, (8), pp. 16671676.
    21. 21)
      • 27. Machado, J.A.T.: ‘Fractional order description of DNA’, Appl. Math. Model., 2015, 39, (14), pp. 40954102.
    22. 22)
      • 28. Wang, J., Ye, Y., Gao, X.: ‘Fractional 90° phase-shift filtering based on the double-sided Grünwald–Letnikov differintegrator’, IET Signal Process., 2015, 9, (4), pp. 328334.
    23. 23)
      • 24. Psychalinos, C., Elwakil, A.S., Radwan, A.G., et al: ‘Guest editorial: fractional-order circuits and systems: theory, design, and applications’, Circuits Syst. Signal Process., 2016, 35, pp. 18071813.
    24. 24)
      • 43. Sigrist, Z., Grivel, E., Alcoverro, B.: ‘Estimating second-order Volterra system parameters from noisy measurements based on an LMS variant or an errors-in-variables method’, Signal Process., 2010, 92, (4), pp. 10101020.
    25. 25)
      • 26. Chen, Y.Q., Xue, D., Visioli, A.: ‘Guest editorial for special issue on fractional order systems and controls’, IEEE/CAA J. Autom. Sin., 2016, 3, (3), pp. 255256.
    26. 26)
      • 51. Ding, F., Chen, T.: ‘Performance bounds of forgetting factor least-squares algorithms for time-varying systems with finite measurement data’, IEEE Trans. Circ. Syst. I Reg. Pap., 2005, 52, (3), pp. 555566.
    27. 27)
      • 31. Ortigueira, M.D., Ionescu, C.M., Machado, J.T., et al: ‘Fractional signal processing and applications’, Signal Process., 2015, 107, p. 197.
    28. 28)
      • 48. Osgouei, S.G., Geravanchizadeh, M.: ‘Speech enhancement by modified convex combination of fractional adaptive filtering’, Iran. J. Electric. Electron. Eng., 2014, 10, (14), pp. 256266..
    29. 29)
      • 25. Couceiro, M.S., Ferreira, N.M.F., Machado, J.A.T.: ‘Application of fractional algorithms in the control of a robotic bird’, Commun. Nonlinear Sci. Numer. Simul., 2010, 15, (4), pp. 895910.
    30. 30)
      • 1. Giri, F., Bai, E.-W. (EDs): ‘Block-oriented nonlinear system identification’, vol. 1, (Springer, London2010).
    31. 31)
      • 32. Zahoor, R.M.A., Qureshi, I.M.: ‘A modified least mean square algorithm using fractional derivative and its application to system identification’, Euro. J. Sci. Res., 2009, 35, (1), pp. 1421.
    32. 32)
      • 7. Moon, J., Kim, B.: ‘Enhanced Hammerstein behavioral model for broadband wireless transmitters’, IEEE Trans. Microw. Theory Tech., 2011, 59, (4), pp. 924933.
    33. 33)
      • 17. Chen, J., Ding, R.: ‘An auxiliary-model-based stochastic gradient algorithm for dual-rate sampled-data Box–Jenkins systems’, Circuits Syst. Signal Process., 2013, 32, (5), pp. 24752485.
    34. 34)
      • 23. Idiou, D., Charef, A., Djouambi, A.: ‘Linear fractional order system identification using adjustable fractional order differentiator’, IET Signal Process., 2014, 8, (4), pp. 398409.
    35. 35)
      • 33. Chaudhary, N.I., Raja, M.A.Z., Aslam, M.S., et al: ‘Novel generalization of Volterra LMS algorithm to fractional order with application to system identification’, Neural Comput. Appl., 2016, pp. 118. doi: 10.1007/s00521-016-2548-5.
    36. 36)
      • 35. Aslam, M.S., Raja, M.A.Z.: ‘A new adaptive strategy to improve online secondary path modeling in active noise control systems using fractional Signal Processing approach’, Signal Process., 2015, 107, pp. 433443.
    37. 37)
      • 29. Machado, J.A.T., Eugénia Mata, M.: ‘Pseudo phase plane and fractional calculus modeling of western global economic downturn’, Commun. Nonlinear Sci. Numer. Simul., 2015, 22, (1), pp. 396406.
    38. 38)
      • 2. Scarpiniti, M., Comminiello, D., Parisi, R., et al: ‘Hammerstein uniform cubic spline adaptive filters: learning and convergence properties’, Signal Process., 2014, 100, pp. 112123.
    39. 39)
      • 16. Liu, Y., Wang, D., Ding, F.: ‘Least squares based iterative algorithms for identifying Box–Jenkins models with finite measurement data’, Digit. Signal Process., 2016, 20, (5), pp. 14581467.
    40. 40)
      • 13. Ding, F.: ‘Hierarchical multi-innovation stochastic gradient algorithm for Hammerstein nonlinear system modeling’, Appl. Math. Model., 2013, 37, (4), pp. 16941704.
    41. 41)
      • 41. Guérin, A., Faucon, G., Le Bouquin-Jeannès, R.: ‘Nonlinear acoustic echo cancellation based on Volterra filters’, IEEE Trans. Speech Audio Process., 2003, 11, (6), pp. 672683.
    42. 42)
      • 8. Carini, A., Sicuranza, G.L., Mathews, V.J.: ‘Efficient adaptive identification of linear-in-the-parameters nonlinear filters using periodic input sequences’, Signal Process., 2013, 93, (5), pp. 12101220.
    43. 43)
      • 15. Jing, S., Pan, T., Li, Z.: ‘Recursive Bayesian algorithm with covariance resetting for identification of Box–Jenkins systems with non-uniformly sampled input data’, Circuits Syst. Signal Process., 2016, 35, (3), pp. 919932.
    44. 44)
      • 20. Chaudhary, N.I., Raja, M.A.Z.: ‘Design of fractional adaptive strategy for input nonlinear Box-Jenkins systems’, Signal Process., 2015, 116, pp. 141151.
    45. 45)
      • 37. Pires EJ, S., Machado, J.T., de Moura Oliveira, P.B., et al: ‘Particle swarm optimization with fractional-order velocity’, Nonlinear Dyn., 2010, 61, (1–2), pp. 295301.
    46. 46)
      • 47. Chaudhary, N.I., Raja, M.A.Z., Khan, A.R.: ‘Design of modified fractional adaptive strategies for Hammerstein nonlinear control autoregressive systems’, Nonlinear Dyn., 2015, 82, (4), pp. 18111830.
    47. 47)
      • 49. Podlubny, I.: ‘Fractional differential equations’ (Academic Press, New York, 1999).
    48. 48)
      • 46. Raja, M.A.Z., Chaudhary, N.I.: ‘Adaptive strategies for parameter estimation of Box–Jenkins systems’, IET Signal Process., 2014, 8, (9), pp. 968980.
    49. 49)
      • 42. Mateo, J., García, M.A., Sánchez, C., et al: ‘Robust Volterra filter design for enhancement of electroencephalogram signal processing’, Circuits Syst. Signal Process., 2013, 32, (1), pp. 233253.
    50. 50)
      • 10. Ding, F., Liu, X.P., Liu, G.: ‘Identification methods for Hammerstein nonlinear systems’, Digit. Signal Process., 2011, 21, (2), pp. 215238.
    51. 51)
      • 4. Comminiello, D., Scarpiniti, M.L., Azpicueta-Ruiz, A., et al: ‘Functional link adaptive filters for nonlinear acoustic echo cancellation’, IEEE Trans. Audio Speech Lang. Process., 2013, 21, (7), pp. 15021512.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2016.0578
Loading

Related content

content/journals/10.1049/iet-spr.2016.0578
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address