access icon free Denoising of single-trial event-related potentials using adaptive modelling

In this study, the authors present a modelling method based on the adaptive linear combiner to denoise single-trial event-related potentials. The orthonormal Hermite basis functions act as inputs of the adaptive linear combiner. To estimate and to adjust the parameters of the adaptive filter, the authors use the variable step-size least mean square algorithm which is well suited to track rapid changes of non-stationary signals. The performance of the method is tested with simulated evoked potentials and with real visual event-related potentials. For simulated data, the adaptive Hermite model gave significant enhancement in latency and amplitude estimation as well as in the observation of single-trial event-related potentials, in comparison with wavelet techniques and with other models of adaptive filters. For the real data, the proposed method filters the ongoing electroencephalogram activity, thus allowing a better identification of single-trial visual event-related potentials. The results confirm that the Hermite adaptive linear combiner model provides a simple and fast tool that helps to study single-trial event-related potential responses.

Inspec keywords: least mean squares methods; adaptive filters; visual evoked potentials; signal denoising; amplitude estimation; electroencephalography; medical signal processing

Other keywords: Hermite adaptive linear combiner model; electroencephalogram activity; simulated evoked enhancement; variable step-size least mean square algorithm; real visual event-related potential; adaptive modelling; amplitude estimation; orthonormal Hermite basis function; adaptive filter parameter adjustment; nonstationary signal rapid change tracking; single-trial event-related potential denoising

Subjects: Electrical activity in neurophysiological processes; Electrodiagnostics and other electrical measurement techniques; Probability theory, stochastic processes, and statistics; Biology and medical computing; Other topics in statistics; Digital signal processing; Physiological optics, vision; Interpolation and function approximation (numerical analysis); Other topics in statistics; Interpolation and function approximation (numerical analysis); Filtering methods in signal processing; Bioelectric signals; Numerical approximation and analysis

References

    1. 1)
      • 19. Burle, B., Roger, C., Allain, S., et al: ‘Error negativity does not reflect conflict: a reappraisal of conflict monitoring and anterior cingulate cortex activity’, J. Cogn. Neurosci., 2008, 20, pp. 16371655.
    2. 2)
      • 9. Iyer, D., Boutros, N.N., Zouridakis, G.: ‘Single-trial analysis of auditory evoked potentials improves separation of normal and schizophrenia subjects’, Clin. Neurophysiol., 2012, 123, (9), pp. 18101820.
    3. 3)
      • 16. Benkherrat, M., Nefati, T., Vidal, F., et al: ‘Individual event-related potentials extraction by VSS LMS adaptive Hermite model filter’. IECON Proc. Industrial Electronics Conf., November 2009, pp. 20872091.
    4. 4)
      • 28. André-Obadia, N., Mauguière, F.: ‘Potentiels évoqués en neurologie: réponses normales’, EMC – Neurologie, 2015, 12, (3), pp. 128.
    5. 5)
      • 11. Maki, H., Toda, T., Sakti, S., et al: ‘Enhancing event-related potentials based on maximum a posteriori estimation with a spatial correlation prior’, IEICE Trans. Inf. Syst., 2016, E99.D, (6), pp. 14371446.
    6. 6)
      • 10. Iyer, D., Díaz, J., Zouridakis, G.: ‘Consistency of the auditory evoked response: the presence of aberrant responses and their effect on N100 localization’, J. Neurosci. Methods, 2012, 208, (2), pp. 173180.
    7. 7)
      • 23. Laguna, P., Jané, R., Olmos, S., et al: ‘Adaptive estimation of QRS complex wave features of ECG signal by the Hermite model’, Med. Biol. Eng. Comput., 1996, 34, pp. 5868.
    8. 8)
      • 15. Thakor, N., Guo, X., Vax, C., et al: ‘Orthonormal (Fourier and Walsh) models of time-varying evoked potentials in neurological injury’, IEEE Trans. Biomed. Eng., 1993, 40, pp. 213221.
    9. 9)
      • 18. Roger, C., Bénar, C.G., Vidal, F., et al: ‘Rostral cingulate zone and correct response monitoring: ICA and source localization evidences for the unicity of correct and error-negativities’, Neuroimage, 2010, 51, pp. 391403.
    10. 10)
      • 6. Fukami, T., Watanabe, J., Ishikawa, F.: ‘Robust estimation of event-related potentials via particle filter’, Comput. Methods Programs Biomed., 2016, 125, pp. 2636.
    11. 11)
      • 2. Arieli, A., Sterkin, A., Grinvald, A., et al: ‘Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses’, Science, 1996, 273, (5283), pp. 18681871.
    12. 12)
      • 20. Gratton, G., Coles, M.G.H., Donchin, E.: ‘A new method for off-line removal of ocular artifact’, Electroencephalogr. Clin. Neurophysiol., 1983, 55, pp. 468484.
    13. 13)
      • 24. Yeung, N., Bogacz, R., Holroyd, C.B., et al: ‘Theta phase resetting and the error-related negativity’, Psychophysiology, 2007, 44, pp. 3949.
    14. 14)
      • 25. Yeung, N., Bogacz, R., Holroyd, C.B., et al: ‘Detection of synchronized oscillations in the electroencephalogram: an evaluation of methods’, Psychophysiology, 2004, 41, pp. 822832.
    15. 15)
      • 1. Paukkunen, A., Leminen, M., Sepponen, R.: ‘Development of a method to compensate for signal quality variations in repeated auditory event-related potential recordings’, Front. Neuroeng., 2010, 3, p. 2.
    16. 16)
      • 3. Jarchi, D., Sanei, S., Mohseni, H.R., et al: ‘Coupled particle filtering: a new approach for P300-based analysis of mental fatigue’, Biomed. Signal Proc. Control, 2011, 6, (2), pp. 175185.
    17. 17)
      • 14. Ahmadi, M., Quian Quiroga, R.: ‘Automatic denoising of single-trial evoked potentials’, Neuroimage, 2013, 66, pp. 672680.
    18. 18)
      • 21. Widrow, B., Stearns, S.: ‘Adaptive signal processing’ (Prentice Hall, 1985).
    19. 19)
      • 27. Chan, F.H.Y., Lam, F.K., Poon, P.W.F., et al: ‘Detection of brainstem auditory evoked potential by adaptive filtering’, Med. Biol. Eng. Comput., 1995, 33, pp. 6975.
    20. 20)
      • 29. Faugere, M., Cermolacce, M., Balzani, C., et al: ‘Event related potentials (ERP's) in psychiatry’, Ann. Med. Psychol. (Paris), 2013, 171, (5), pp. 342349.
    21. 21)
      • 22. Kwong, R., Johnston, E.: ‘A variable step size LMS algorithm’, IEEE Trans. Signal Process., 1992, 40, pp. 16331642.
    22. 22)
      • 4. Huang, Y., Chen, X., Zhang, J., et al: ‘Single-trial ERPs denoising via collaborative filtering on ERPs images’, Neurocomputing, 2015, 149, pp. 914923.
    23. 23)
      • 7. Ting, C.-M., Salleh, S.-H., Zainuddin, Z., et al: ‘Modeling and estimation of single trial event-related potentials using partially observed diffusion processes’, Digit. Signal Process., 2015, 36, pp. 128143.
    24. 24)
      • 26. Coppola, R., Tabor, R., Buchsbaum, M.S.: ‘Signal to noise ratio and response variability measurements in single trial evoked potentials’, Electroencephalogr. Clin. Neurophysiol., 1978, 44, pp. 214222.
    25. 25)
      • 13. Wang, Z., Maier, A., Leopold, D.A., et al: ‘Single-trial evoked potential estimation using wavelets’, Comput. Biol. Med., 2007, 37, pp. 463473.
    26. 26)
      • 5. Guo, G., Zhang, J., Thalmann, D.: ‘A simple but effective method to incorporate trusted neighbors in recommender systems’ (Springer, Berlin Heidelberg, 2012), pp. 114125.
    27. 27)
      • 8. Mowla, M.R., Ng, S.-C., Zilany, M.S.A., et al: ‘Single-trial evoked potential estimation using iterative principal component analysis’, IEEE Sens. J., 2016, 16, (18), pp. 69556960.
    28. 28)
      • 12. Quiroga, R., Garcia, H.: ‘Single-trial event-related potentials with wavelet denoising’, Clin. Neurophysiol., 2003, 114, pp. 376390.
    29. 29)
      • 17. Huang, B., Xiao, Y., Ma, Y., et al: ‘A simplified variable step-size LMS algorithm for Fourier analysis and its statistical properties’, Signal Process., 2015, 117, pp. 6981.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2016.0528
Loading

Related content

content/journals/10.1049/iet-spr.2016.0528
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading