access icon free Common spatial pattern method for real-time eye state identification by using electroencephalogram signals

Cross-channel maximum and minimum are used to monitor real-time electroencephalogram signals in 14 channels. On detection of a possible change, multivariate empirical mode decomposed the last 2 s of the signal into narrow-band intrinsic mode functions. Common spatial pattern is then utilised to create discriminating features for classification purpose. Logistic regression, artificial neural network, and support vector machine classifiers all could detect the eye state change with 83.4% accuracy in <2 s. This algorithm provides a valuable improvement in comparison with a recent procedure that took about 20 min to classify new instances with 97.3% accuracy. Application of the introduced algorithm in the real-time eye state classification is promising. Increasing the training examples could even improve the accuracy of the classification analytics.

Inspec keywords: real-time systems; support vector machines; regression analysis; neural nets; electroencephalography; medical signal processing

Other keywords: cross-channel minimum; support vector machine classifiers; cross-channel maximum; multivariate empirical mode; narrow-band intrinsic mode functions; common spatial pattern method; real-time eye state identification; SVM; artificial neural network; electroencephalogram signals; logistic regression

Subjects: Neural computing techniques; Signal processing and detection; Biology and medical computing; Bioelectric signals; Other topics in statistics; Knowledge engineering techniques; Electrodiagnostics and other electrical measurement techniques; Other topics in statistics; Digital signal processing; Probability theory, stochastic processes, and statistics

References

    1. 1)
      • 20. Rehman, N., Mandic, D.P.: ‘Multivariate empirical mode decomposition’, Proc. R. Soc. A, 2009, 466, (2117), pp. 12911302.
    2. 2)
      • 22. Tan, D.S., Nijholt, A.: ‘Brain–computer interfaces’ (Springer-Verlag, London, 2010).
    3. 3)
      • 9. Wang, T., Guan, S.U., Man, K.L., et al: ‘EEG eye state identification using incremental attribute learning with time-series classification’, Math. Probl. Eng., 2014, 2014, (2014), pp. 158161.
    4. 4)
      • 7. Correa, A.G., Orosco, L., Laciar, E.: ‘Automatic detection of drowsiness in EEG records based on multimodal analysis’, Med. Eng. Phys., 2014, 36, (2), pp. 244249.
    5. 5)
      • 3. Estévez, P.A., Held, C.M., Holzmann, C.A., et al: ‘Polysomnograhic pattern recognition for automated classification of sleep-waking states in infants’, Med. Biol. Eng. Comput., 2002, 40, (1), pp. 105113.
    6. 6)
      • 21. Koles, Z.J.: ‘The quantitative extraction and topographic mapping of the abnormal components in the clinical EEG’, Electroencephalogr. Clin. Neurophysiol., 1991, 79, (6), pp. 440447.
    7. 7)
      • 6. Mardi, Z., Ashtiani, S.N.M., Mikaili, M.: ‘EEG-based drowsiness detection for safe driving using chaotic features and statistical tests’, J. Med. Signals Sens., 2011, 1, (2), pp. 130137.
    8. 8)
      • 8. Huabiao, Q., Jun, L., Tianyi, H.: ‘An eye state identification method based on the embedded hidden Markov model’. IEEE Int. Conf. Vehicular Electronics and Safety, Istanbul, Turkey, July 2012, pp. 255260.
    9. 9)
      • 19. Huang, N.E., Shen, Z., Long, S.R., et al: ‘The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis’, Proc. R. Soc. A, 1998, 454, pp. 903995.
    10. 10)
      • 12. Schalk, G., Mellinger, J.: ‘A practical guide to brain–computer interfacing with BCI2000’ (Springer Science & Business Media, 2010).
    11. 11)
      • 11. Sabanci, K., Koklu, M.: ‘The classification of eye state by using kNN and MLP classification models according to the EEG signals’, Int. J. Intell. Syst. Appl. Eng., 2015, 3, (4), pp. 127130.
    12. 12)
      • 4. Norizam, S., Taib, M.N., Aris, M., et al: ‘Stress features identification from EEG signals using EEG asymmetry & spectral centroids techniques’. Proc. IEEE EMBS Conf. Biomedical Engineering and Sciences, Kuala Lumpur, Malaysia, December 2010, pp. 417421.
    13. 13)
      • 23. Blankertz, B., Tomioka, R., Lemm, S., et al: ‘Optimizing spatial filters for robust EEG single-trial analysis’, IEEE Signal Process. Mag., 2008, 25, (1), pp. 4156.
    14. 14)
      • 13. Kamel, N., Malik, A.S.: ‘EEG/ERP analysis methods and applications’ (CRC Press, 2015).
    15. 15)
      • 5. Królak, A., Strumiłło, P.: ‘Eye-blink detection system for human–computer interaction’, Univers. Access. Inf. Soc., 2012, 11, (4), pp. 409419.
    16. 16)
      • 10. Rösler, O., Suendermann, D.: ‘First step towards eye state prediction using EEG’. Proc. Int. Conf. Applied Informatics for Health and Life Sciences (AIHLS 13), Istanbul, Turkey, September 2013.
    17. 17)
      • 15. Rösler, O., Bader, L., Forster, J., et al: ‘Comparison of EEG devices for eye state classification’. Int. Conf. Applied Informatics for Health and Life Sciences (AIHLS 14), Kusadasi, Turkey, October 2014.
    18. 18)
      • 17. Park, C., Looney, D., Rehman, N., et al: ‘Classification of motor imagery BCI using multivariate empirical mode decomposition’, IEEE Trans. Neural Syst. Rehabil. Eng., 2013, 21, (1), pp. 1021.
    19. 19)
      • 14. Frank, A., Asuncion, A.: ‘UCI machine learning repository’. Available at http://archive.ics.uci.edu/ml, accessed 2016.
    20. 20)
      • 2. Genuth, I.: ‘All in the mind [EEG]’, Eng. Technol., 2015, 10, (5), pp. 3739.
    21. 21)
      • 24. Li, L.: ‘The differences among eyes-closed, eyes-open and attention states: an EEG study’. Proc. Sixth Int. Conf. Wireless Communications Networking and Mobile Computing (WiCOM), Chengdu City, China, September 2010.
    22. 22)
      • 18. Mandic, D., Rehman, N., Wu, Z., et al: ‘Empirical mode decomposition-based time–frequency analysis of multivariate signals’, IEEE Signal Process. Mag., 2013, 30, (6), pp. 7486.
    23. 23)
      • 1. Azevedo, F.A., Carvalho, L.R., Grinberg, L.T., et al: ‘Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain’, J. Comp. Neurol., 2009, 513, (5), pp. 532541.
    24. 24)
      • 16. Delorme, A., Makeig, S.: ‘EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics’, J. Neurosci. Methods, 2004, 134, pp. 921.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2016.0520
Loading

Related content

content/journals/10.1049/iet-spr.2016.0520
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading