access icon free Subcarrier and power allocation scheme for downlink OFDM-NOMA systems

In this study, the authors investigate the resource allocation (RA) problem for the downlink orthogonal frequency division multiplexing based non-orthogonal multiple access (OFDM-NOMA) system. The RA problem is decomposed into two subproblems of subcarrier allocation (SA) and power allocation (PA). For the SA, a user grouping based greedy algorithm is proposed under the assumption that power is uniformly distributed among all the selected users. For the PA, the authors propose the iterative water-filling and specific user rate maximising criterion with minimum rate constraints (iterative WF + SURMC-MRC) scheme to jointly consider the PA problem among the selected users on one subcarrier and the PA problem among subcarriers. The simulation results show that the spectral efficiency performance of the proposed iterative WF + SURMC-MRC scheme outperforms those of the (non-iterative) WF + SURMC-MRC scheme and the uniform distribution (UD) + SURMC-MRC scheme. Moreover, the iterative WF + SURMC-MRC scheme has advantages in resisting against the user overloading compared with the (non-iterative) WF + SURMC-MRC scheme.

Inspec keywords: resource allocation; greedy algorithms; multi-access systems; OFDM modulation; iterative methods

Other keywords: specific user rate maximising criterion; user grouping based greedy algorithm; orthogonal frequency division multiplexing; nonorthogonal multiple access system; iterative WF-SURMC-MRC scheme; RA problem; minimum rate constraint; power allocation scheme; resource allocation problem; downlink OFDM-NOMA system; spectral efficiency performance; iterative water-filling criterion; uniform distribution; UD; subcarrier allocation scheme

Subjects: Interpolation and function approximation (numerical analysis); Multiple access communication; Modulation and coding methods

References

    1. 1)
      • 17. Saito, Y., Kishiyama, Y., Benjebbour, A., et al: ‘Non-orthogonal multiple access (NOMA) for cellular future radio access’. Proc. Int. Conf. IEEE Vehicular Technology Conf. (VTC Spring), June 2013, pp. 15.
    2. 2)
      • 11. Timotheou, S., Krikidis, I.: ‘Fairness for non-orthogonal multiple access in 5G systems’, IEEE Signal Process. Lett., 2015, 22, (10), pp. 16471651.
    3. 3)
      • 18. Ding, Z., Yang, Z., Fan, P., et al: ‘On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users’, IEEE Signal Process. Lett., 2014, 12, (21), pp. 15011505.
    4. 4)
      • 8. Benjebbour, A., Li, A., Saito, Y., et al: ‘System-level performance of downlink NOMA for future LTE enhancements’. Proc. Int. Conf. IEEE Globecom Workshops (GC Wkshps), December 2013, pp. 6670.
    5. 5)
      • 10. Hojeij, M.-R., Farah, J., Nour, C., et al: ‘Resource allocation in downlink non-orthogonal multiple access (NOMA) for future radio access’. Proc. Int. Conf. IEEE Vehicular Technology Conf. (VTC Spring), May 2015, pp. 16.
    6. 6)
      • 22. Sun, Y., Ng, D.W.K., Ding, Z., et al: ‘Optimal joint power and subcarrier allocation for MC-NOMA systems’. ArXiv e-prints, March 2016.
    7. 7)
      • 7. Schaepperle, J., Ruegg, A.: ‘Enhancement of throughput and fairness in 4G wireless access systems by non-orthogonal signaling’, Bell Labs. Technol., 2009, 13, (4), pp. 5977.
    8. 8)
      • 16. Tomida, S., Higuchi, K.: ‘Non-orthogonal access with SIC in cellular downlink for user fairness enhancement’. Proc. Int. Conf. Intelligent Signal Processing and Communications Systems (ISPACS), December 2011, pp. 16.
    9. 9)
      • 9. Parida, P., Das, S.: ‘Power allocation in OFDM based NOMA systems: a DC programming approach’. Proc. Int. Conf. IEEE Globecom Workshops (GC Wkshps), December 2014, pp. 10261031.
    10. 10)
      • 15. Chen, C., Bai, L., Wu, B., et al: ‘Downlink throughput maximization for OFDMA systems with feedback channel capacity constraints’, IEEE Trans. Signal Process., 2011, 59, (1), pp. 441446.
    11. 11)
      • 6. Li, Q., Niu, H., Papathanassiou, A., et al: ‘5G network capacity: key elements and technologies’, IEEE Veh. Technol. Mag., 2014, 9, (1), pp. 7178.
    12. 12)
      • 20. Boyd, S., Vandenberghe, L.: ‘Convex optimization’ (Cambridge University Press, 2009).
    13. 13)
      • 5. 3GPP TS 36.211: ‘Physical channels and modulation’. 2011.
    14. 14)
      • 4. 3GPP TS 36.201: ‘Long term evolution (LTE) physical layer’. 2009.
    15. 15)
      • 14. Wu, D., Cai, Y., Pan, C.: ‘Joint subcarrier and power allocation in uplink OFDMA systems with incomplete channel state information’. Proc. Int. Conf. Networks Security, Wireless Communications and Trusted Computing (NSWCTC), April 2009, pp. 4751.
    16. 16)
      • 19. Imari, M.Al., Xiao, P., Imran, M., et al: ‘Uplink non-orthogonal multiple access for 5G wireless networks’. Proc. Int. Conf. Wireless Communications Systems (ISWCS), August 2014, pp. 781785.
    17. 17)
      • 21. 3GPP TS 36.300: ‘Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN)’. 2016.
    18. 18)
      • 12. Choi, J.: ‘Minimum power multicast beamforming with superposition coding for multiresolution broadcast and application to NOMA systems’, IEEE Trans. Commun., 2015, 63, (3), pp. 791800.
    19. 19)
      • 1. IMT-2020: ‘5G concept’. 2015.
    20. 20)
      • 2. IMT-2020: ‘5G wireless technology architecture’. 2015.
    21. 21)
      • 13. Jang, J., Lee, K.B.: ‘Transmit power adaptation for multiuser OFDM systems’, IEEE Sel. Areas Commun., 2003, 21, (2), pp. 171178.
    22. 22)
      • 3. Wang, P., Xiao, J., Ping, L.: ‘Comparison of orthogonal and non-orthogonal approaches to future wireless cellular systems’, IEEE Veh. Technol. Mag., 2006, 1, (3), pp. 411.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2016.0188
Loading

Related content

content/journals/10.1049/iet-spr.2016.0188
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading