access icon free Approximating the standard condition number for cognitive radio spectrum sensing with finite number of sensors

In this study, the authors consider the standard condition number (SCN) detector for a cognitive radio with finite number of cooperative sensors. They derive an exact nested form of the distribution of the SCN for the central uncorrelated, non-central uncorrelated and central semi-correlated Wishart matrices under and hypotheses. Due to the complexity of these expressions, the authors approximate the distribution of the SCN by the generalised extreme value distribution using moment matching. They derive the exact form of the pth moment of the SCN for these cases. Consequently, the performance probabilities are approximated and a simple decision threshold formula is provided. In addition, a similar approximation for the detection probability is provided using non-central/central approximation. They show that the proposed analytical approximations provide high accuracy using Monte-Carlo simulations.

Inspec keywords: probability; cooperative communication; matrix algebra; radio spectrum management; signal detection; sensors; cognitive radio; approximation theory; decision theory

Other keywords: generalised extreme value distribution; central semicorrelated Wishart matrices; Monte-Carlo simulations; noncentral uncorrelated Wishart matrices; noncentral-central approximation; performance probability; H1 hypotheses; standard condition number approximation; central uncorrelated Wishart matrices; SCN detector; analytical approximations; cooperative sensors; moment matching; H0 hypotheses; simple decision threshold formula; detection probability; cognitive radio spectrum sensing

Subjects: Linear algebra (numerical analysis); Interpolation and function approximation (numerical analysis); Radio links and equipment; Game theory; Signal detection

References

    1. 1)
      • 6. Bianchi, P., Debbah, M., Maida, M., et al: ‘Performance of statistical tests for single-source detection using random matrix theory’, IEEE Trans. Inf. Theory, 2011, 57, (4), pp. 24002419.
    2. 2)
      • 24. Gradshteyn, I.S., Ryzhik, I.M.: ‘Table of integrals, series, and products’, in Jeffrey, A., Zwillinger, D. (Eds.) (Elsevier, 2007).
    3. 3)
      • 23. Zanella, A., Chiani, M., Win, M.: ‘On the marginal distribution of the eigenvalues of Wishart matrices’, IEEE Trans. Commun., 2009, 57, (4), pp. 10501060.
    4. 4)
      • 26. Tan, W.Y., Gupta, R.P.: ‘On approximating the non-central Wishart distribution with Wishart distribution’, Commun. Stat. Theory Method, 1983, 12, (22), pp. 25892600.
    5. 5)
      • 11. Penna, F., Garello, R., Spirito, M.: ‘Probability of missed detection in eigenvalue ratio spectrum sensing’. IEEE Int. Conf. on Wireless and Mobile Computing, Networking and Communications, 2009, WIMOB 2009, October 2009, pp. 117122.
    6. 6)
      • 8. Cardoso, L., Debbah, M., Bianchi, P., et al: ‘Cooperative spectrum sensing using random matrix theory’. Proc. of IEEE Int. Symp. on Wireless Pervasive Computing (ISWPC), Greece, May 2008, pp. 334338.
    7. 7)
      • 18. Johnstone, M.: ‘On the distribution of the largest eigenvalue in principal components analysis’, Ann. Stat., 2001, 29, pp. 295327.
    8. 8)
      • 30. Horn, R.A., Johnson, C.R.: ‘Matrix analysis’ (Cambridge University Press, 2012, 2nd edn.).
    9. 9)
      • 25. Jin, S., McKay, M., Gao, X., et al: ‘MIMO multichannel beamforming: ser and outage using new eigenvalue distributions of complex noncentral Wishart matrices’, IEEE Trans. Commun., 2008, 56, (3), pp. 424434.
    10. 10)
      • 19. Curtiss, J.H.: ‘On the distribution of the quotient of two chance variables’, Ann. Math. Stat., 1941, 12, (4), pp. 409421. Available at http://dx.doi.org/10.1214/aoms/1177731679.
    11. 11)
      • 16. Couillet, R., Debbah, M.: ‘Random matrix theory for wireless communications’ (Cambridge University Press, 2011).
    12. 12)
      • 29. Kobeissi, H., Nafkha, A., Nasser, Y., et al: ‘Simple and accurate closed-form approximation of the standard condition number distribution with application in spectrum sensing’. CROWNCOM 2016, 2016, pp. 351362.
    13. 13)
      • 1. Yucek, T., Arslan, H.: ‘A survey of spectrum sensing algorithms for cognitive radio applications’, IEEE Commun. Surv. Tutor., 2009, 11, (1), pp. 116130.
    14. 14)
      • 21. Matthaiou, M., McKay, M., Smith, P., et al: ‘On the condition number distribution of complex Wishart matrices’, IEEE Trans. Commun., 2010, 58, (6), pp. 17051717.
    15. 15)
      • 14. Tulino, A.M., Verdú, S.: ‘Random matrix theory and wireless communications’ (Now Publishers Inc., 2004).
    16. 16)
      • 2. Cabric, D., Mishra, S.M., Brodersen, R.W.: ‘Implementation issues in spectrum sensing for cognitive radios’. Conf. Record of the Thirty-Eighth Asilomar Conf. on Signals, Systems and Computers, 2004, November 2004, vol. 1, pp. 772776.
    17. 17)
      • 5. Zeng, Y., Liang, Y.-C.: ‘Eigenvalue-based spectrum sensing algorithms for cognitive radio’, IEEE Trans. Commun., 2009, 57, (6), pp. 17841793.
    18. 18)
      • 4. Tandra, R., Sahai, A.: ‘SNR walls for signal detection’, IEEE J. Sel. Top. Signal Process., 2008, 2, (1), pp. 417.
    19. 19)
      • 15. Marcenko, V.A., Pastur, L.A.: ‘Distribution of eigenvalues for some sets of random matrices’, Math. USSR-Sbornik, 1967, 1, (4), pp. 457483.
    20. 20)
      • 10. Penna, F., Garello, R., Figlioli, D., et al: ‘Exact non-asymptotic threshold for eigenvalue-based spectrum sensing’. Proc. of IEEE 4th Int. Conf. on CROWNCOM, Germany, June 2009, pp. 15.
    21. 21)
      • 3. Deng, R., Chen, J., Yuen, C., et al: ‘Energy-efficient cooperative spectrum sensing by optimal scheduling in sensor-aided cognitive radio networks’, IEEE Trans. Veh. Technol., 2012, 61, (2), pp. 716725.
    22. 22)
      • 12. Zhang, W., Abreu, G., Inamori, M., et al: ‘Spectrum sensing algorithms via finite random matrices’, IEEE Trans. Commun., 2012, 60, (1), pp. 164175.
    23. 23)
      • 28. Kotz, S., Nadarajah, S.: ‘Extreme value distributions: theory and applications’ (Imperial College Press, 2000).
    24. 24)
      • 20. Feldheim, O.N., Sodin, S.: ‘A universality result for the smallest eigenvalues of certain sample covariance matrices’, Geom. Funct. Anal., 2010, 20, (1), pp. 88123. Available at http://dx.doi.org/10.1007/s00039-010-0055-x.
    25. 25)
      • 17. Tracy, C.A., Widom, H.: ‘On orthogonal and symplectic matrix ensembles’, Commun. Math. Phys., 1996, 177, (3), pp. 727754. Available at http://projecteuclid.org/euclid.cmp/1104286442.
    26. 26)
      • 7. Kobeissi, H., Nasser, Y., Nafkha, A., et al: ‘A simple formulation for the distribution of the scaled largest eigenvalue and application to spectrum sensing’. CROWN-COM 2016, May 2016, pp. 284293.
    27. 27)
      • 9. Penna, F., Garello, R., Spirito, M.: ‘Cooperative spectrum sensing based on the limiting eigenvalue ratio distribution in Wishart matrices’, IEEE Commun. Lett., 2009, 13, (7), pp. 507509.
    28. 28)
      • 13. Kobeissi, H., Nasser, Y., Bazzi, O., et al: ‘On the performance evaluation of eigenvalue-based spectrum sensing detector for MIMO systems’. XXXIth URSI General Assembly and Scientific Symp. (URSI GASS), August 2014, pp. 14.
    29. 29)
      • 22. Wei, L., Tirkkonen, O.: ‘Cooperative spectrum sensing of OFDM signals using largest eigenvalue distributions’. IEEE 20th Int. Symp. on Personal, Indoor and Mobile Radio Communications, September 2009, pp. 22952299.
    30. 30)
      • 27. Chiani, M., Win, M., Shin, H.: ‘Mimo networks: The effects of interference’, IEEE Trans. Inf. Theory, 2010, 56, (1), pp. 336349.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2016.0146
Loading

Related content

content/journals/10.1049/iet-spr.2016.0146
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading