Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free l 0-norm penalised shrinkage linear and widely linear LMS algorithms for sparse system identification

In this study, the authors propose an l 0-norm penalised shrinkage linear least mean squares (l 0-SH-LMS) algorithm and an l 0-norm penalised shrinkage widely linear least mean squares (l 0-SH-WL-LMS) algorithm for sparse system identification. The proposed algorithms exploit the priori and the posteriori errors to calculate the varying step-size, thus they can adapt to the time-varying channel. Meanwhile, in the cost function they introduce a penalty term that favours sparsity to enable the applicability for sparse condition. Moreover, the l 0-SH-WL-LMS algorithm also makes full use of the non-circular properties of the signals of interest to improve the tracking capability and estimation performance. Quantitative analysis of the convergence behaviour for the l 0-SH-WL-LMS algorithm verifies the capabilities of the proposed algorithms. Simulation results show that compared with the existing least mean squares-type algorithms, the proposed algorithms perform better in the sparse channels with a faster convergence rate and a lower steady-state error. When channel changes suddenly, a filter with the proposed algorithms can adapt to the variation of the channel quickly.

References

    1. 1)
      • 18. Shi, Y.M., Huang, L., Qian, C., et al: ‘Shrinkage linear and widely linear complex-valued least mean squares algorithms for adaptive beamforming’, IEEE Trans. Signal Process., 2015, 63, (1), pp. 119131.
    2. 2)
      • 21. Chen, Y., Gu, Y., Hero, A.O.: ‘Sparse LMS for system identification’. IEEE ICASSP, Taipei, April 2009, pp. 31253128.
    3. 3)
      • 36. Lamare, R.C., Sampaio-Neto, R.: ‘Sparsity-aware adaptive algorithms based on alternating optimization and shrinkage’, IEEE Signal Process. Lett., 2014, 21, (2), pp. 225229.
    4. 4)
      • 30. Zibulevsky, M., Elad, M.: ‘l1-l2 optimization in signal and image processing’, IEEE Signal Process. Mag., 2010, pp. 7688.
    5. 5)
      • 19. You, Q.J., Jianyun, Z., Xinan, Z.: ‘A widely-linear LMS algorithm for adaptive beamformer’. IEEE Int. Symp. on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, Hangzhou, China, April 2007, pp. 10601063.
    6. 6)
      • 17. Adali, T., Schreier, P.J., Scharf, L.L.: ‘Complex-valued signal processing: the proper way to deal with impropriety’, IEEE Trans. Signal Process., 2011, 59, (11), pp. 51015125.
    7. 7)
      • 28. Turchetti, C., Biagetti, G., Gianfelica, F., et al: ‘Nonlinear system identification: An effective framework based on the Karhunen-Loeve transform’, IEEE Trans. Signal Process., 2009, 57, (2), pp. 536550.
    8. 8)
      • 14. Benesty, J., Rey, H., Rey Vega, L., et al: ‘A nonparametric VSSNLMS algorithm’, IEEE Signal Process., 2006, 13, (10), pp. 581584.
    9. 9)
      • 6. Deng, H., Dyba, R.A.: ‘Partial update PNLMS algorithm for network echo cancellation’. IEEE ICASSP, Taipei, April 2009, pp. 13291332.
    10. 10)
      • 27. Bradley, P.S., Mangasarian, O.L.: ‘Feature selection via concave minimization and support vector machines’. Proc. 13th ICML, San Francisco, CA, 1998, pp. 8290.
    11. 11)
      • 29. Daubechies, I., Defrise, M., De-Mol, C.: ‘An iterative thresholding algorithm for linear inverse problems with a sparsity constraint’, Commun. Pure Appl. Math., 2004, 57, (11), pp. 14131457.
    12. 12)
      • 24. Taheri, O., Vorobyov, S.A.: ‘Sparse channel estimation with lp-norm and reweighted l1-norm penalized least mean squares’. IEEE ICASSP, Prague, Czech Republic, May 2011, pp. 28642867.
    13. 13)
      • 3. Gay, S.L.: ‘An efficient, fast converging adaptive filter for network echo cancellation’. Asilomar Conf. on Signals, Systems, and Computers, Pacific Grove, CA, USA, November 1998, pp. 394398.
    14. 14)
      • 13. Shin, H., Sayed, A.H., Song, W.: ‘Variable step-size NLMS and affine projection algorithms’, IEEE Signal Process. Lett., 2004, 11, (2), pp. 132135.
    15. 15)
      • 26. Gu, Y., Jin, J., Mei, S.: ‘l0 norm constraint LMS algorithm for sparse system identification’, IEEE Signal Process., 2009, 16, (9), pp. 774777.
    16. 16)
      • 2. Duttweiler, D.L.: ‘Proportionate normalized least-mean-squares adaptation in echo cancelers’, IEEE Trans. Speech Audio Process., 2000, 8, (5), pp. 508518.
    17. 17)
      • 4. Benesty, J., Gay, S.L.: ‘An improved PNLMS algorithm’. Proc. IEEE ICASSP, Orlando, FL, USA, May 2002, pp. 18811884.
    18. 18)
      • 33. Diniz, P.S.R.: ‘Adaptive filtering: algorithms and practical implementation’ (Springer Press, New York, 2008, 3rd edn.).
    19. 19)
      • 7. Paleologu, C., Benesty, J., Ciochina, S.: ‘An improved proportionate NLMS algorithm based on the norm’. IEEE ICASSP, Dallas, TX, March 2010, pp. 309312.
    20. 20)
      • 10. Mader, A., Puder, H., Schmidt, G.U.: ‘Step-size control for acoustic echo cancellation filters – an overview’, Signal Process., 2000, 80, pp. 16971719.
    21. 21)
      • 11. Aboulnasr, T., Mayyas, K.: ‘A robust variable step-size LMS-type algorithm: analysis and simulations’, IEEE Trans. Signal Process., 1997, 45, (3), pp. 631639.
    22. 22)
      • 9. Mathews, V.J., Xie, Z.: ‘A stochastic gradient adaptive filter with gradient adaptive step size’, IEEE Trans. Signal Process., 1993, 41, (6), pp. 20752087.
    23. 23)
      • 22. Gui, G., Peng, W., Adachi, F.: ‘Improved adaptive sparse channel estimation based on the least mean square algorithm’. IEEE WCNC, Shanghai, China, April 2013, pp. 31303134.
    24. 24)
      • 20. Picinbono, B., Chevalier, P.: ‘Widely linear estimation with complex data’, IEEE Trans. Signal Process., 1995, 43, (8), pp. 20302033.
    25. 25)
      • 23. Salman, M.S., Jahromi, M.N.S., Hocanin, A., et al: ‘A zero-attracting variable step-size LMS algorithm for sparse system identification’. IX Int. Symp. on Telecommunications (BIHTEL), Sarajevo, October 2012, pp. 14.
    26. 26)
      • 35. Jin, J., Gu, Y., Mei, S.: ‘A stochastic gradient approach on compressive sensing signal reconstruction based on adaptive filtering framework’, IEEE J. Sel. Top. Signal Process., 2010, 4, (2), pp. 409420.
    27. 27)
      • 8. Kwong, R.H., Johnston, E.W.: ‘A variable step size LMS algorithm’, IEEE Trans. Signal Process., 1992, 40, (7), pp. 16331642.
    28. 28)
      • 25. Su, G., Jin, J., Gu, Y., et al: ‘Performance analysis of l0-norm constraint least mean square algorithm’, IEEE Trans. Signal Process., 2012, 60, (5), pp. 22232235.
    29. 29)
      • 16. Bhotto, M.Z.A., Antoniou, A.: ‘A family of shrinkage adaptive filtering algorithms’, IEEE Trans. Signal Process., 2013, 61, (7), pp. 16891697.
    30. 30)
      • 34. Bhotto, M.Z.A.: ‘Improved robust adaptive-filtering algorithms’. PhD thesis, University of Victoria, 2011.
    31. 31)
      • 32. Douglas, S.C., Mandic, D.P.: ‘Performance analysis of the conventional complex LMS and augmented complex LMS algorithms’. IEEE ICASSP, Dallas, TX, June 2010, pp. 37943797.
    32. 32)
      • 15. Paleologu, C., Benesty, J., Ciochina, S.: ‘A variable step-size proportionate NLMS algorithm for echo cancellation’, Rev. Roum. Sci. Tech. Ser. Electrotech. Energ., 2008, 53, (3), pp. 309317.
    33. 33)
      • 31. Taheri, O., Vorobyov, S.A.: ‘Reweighted l1-norm penalized LMS for sparse channel estimation and its analysis’, Signal Process., 2014, 104, (6) pp. 7079.
    34. 34)
      • 5. Deng, H., Doroslovacki, M.: ‘Proportionate adaptive algorithms for network echo cancellation’, IEEE Trans. Signal Process., 2006, 54, (5), pp. 17941803.
    35. 35)
      • 12. Pazaitis, D.I., Constantinides, A.G.: ‘A novel kurtosis driven variable step-size adaptive algorithm’, IEEE Trans. Signal Process., 1999, 47, (3), pp. 864872.
    36. 36)
      • 1. Farhang-Boroujeny, B.: ‘Adaptive filters: theory and application’ (Wiley Press, Chichester, UK, 2013, 2nd edn. 2006).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2015.0218
Loading

Related content

content/journals/10.1049/iet-spr.2015.0218
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address