access icon free Range-resolution improvement for spaceborne/airborne bistatic synthetic aperture radar using stepped-frequency chirp trains

In this paper, a stepped-frequency spaceborne/airborne bistatic synthetic aperture radar (SFSA-BiSAR) configuration is proposed to show to improve the range resolution of BiSAR. First, the geometry and the signal model of SFSA-BiSAR are formulated, and then an analytical bistatic point target reference spectrum (BPTRS) is derived. Second, based on the developed BPTRS, two imaging algorithms called combination-before-focusing algorithm (CBFA) and combination-after-focusing algorithm (CAFA) are proposed to obtain BiSAR images with improved range resolution. CBFA uses sub-band combination to obtain synthetic BPTRS, and then uses a new bistatic frequency-domain algorithm (BFDA) to obtain the improved BiSAR image, whereas CAFA first uses the BFDA to focus all the sub-pulses, and then uses sub-image combination to obtain the improved BiSAR image. Both of the two algorithms can focus the SFSA-BiSAR signal well and comparison simulations are performed to verify the authors' conclusion. Computation loads are also calculated to compare the two algorithms and show that CAFA uses less floating-point operations than CBFA. Besides, some important parameters of SFSA-BiSAR are analysed both theoretically and numerically to provide a reference for system design.

Inspec keywords: radar resolution; radar imaging; synthetic aperture radar; frequency-domain analysis

Other keywords: SFSA-BiSAR configuration; CAFA; bistatic frequency-domain algorithm; combination-before-focusing algorithm; sub-image combination; CBFA; signal model; improved BiSAR image; spaceborne-airborne bistatic synthetic aperture radar; range-resolution improvement; synthetic BPTRS; analytical bistatic point target reference spectrum; sub-band combination; stepped-frequency chirp trains; imaging algorithm; system design; floating-point operations; BFDA; combination-after-focusing algorithm; analytical BPTRS

Subjects: Optical, image and video signal processing; Radar equipment, systems and applications

References

    1. 1)
    2. 2)
      • 11. Wilkinson, A., Lord, R., Inggs, M.: ‘Stepped-frequency processing by reconstruction of target reflectivity spectrum’. Proc. of the 1998 South African Symp. on Communications and Signal Processing, 1998. COMSIG'98, September 1998, pp. 101104.
    3. 3)
      • 29. Walterscheid, I., Espeter, T., Ender, J.H.G.: ‘Performance analysis of a hybrid bistatic SAR system operating in the double sliding spotlight mode’. IEEE Int. Geoscience and Remote Sensing Symp., 2007. IGARSS 2007, July 2007, pp. 21442147.
    4. 4)
    5. 5)
      • 12. Lord, R., Inggs, M.: ‘High resolution SAR processing using stepped-frequencies’. 1997 IEEE Int. Geoscience and Remote Sensing, 1997. IGARSS'97. Remote Sensing – A Scientific Vision for Sustainable Development, August 1997, vol. 1, pp. 490492.
    6. 6)
    7. 7)
    8. 8)
    9. 9)
      • 28. Gebhardt, U., Loffeld, O., Nies, H., Knedlik, S., Ender, J.: ‘Bistatic airborne/spaceborne hybrid experiment: basic considerations’. Remote Sensing, International Society for Optics and Photonics, 2005, pp. 59 781M59 781M.
    10. 10)
      • 14. Nel, W., Tait, J., Lord, R., Wilkinson, A.: ‘The use of a frequency domain stepped frequency technique to obtain high range resolution on the CSIR x-band SAR system’. IEEE Africon Sixth Africon Conf. in Africa, 2002, October 2002, vol. 1, pp. 327332.
    11. 11)
    12. 12)
      • 9. Xu Hua-ping, Z.Y.-q., Chun-sheng, L.: ‘An algorithm based on spectrum shift estimation for improving range resolution using distributed spaceborne interferometric SAR’, Acta Electron. Sin., 2003, 31, (12), pp. 17901794.
    13. 13)
      • 10. Hong-hui, Y., Yan-fei, W.: ‘Distributed satellites SAR high range resolution imaging using spectral synthesis’, J. Electron. Inf. Technol., 2005, 27, (6), pp. 928931.
    14. 14)
      • 13. Berens, P.: ‘SAR with ultra-high range resolution using synthetic bandwidth’. IEEE 1999 Int. Geoscience and Remote Sensing Symp., 1999. IGARSS'99 Proc., 1999, vol. 3, pp. 17521754.
    15. 15)
    16. 16)
    17. 17)
    18. 18)
      • 2. Walterscheid, I., Espeter, T., Gierull, C., Klare, J., Brenner, A., Ender, J.H.G.: ‘Results and analysis of hybrid bistatic SAR experiments with spaceborne, airborne and stationary sensors’. 2009 IEEE Int. Geoscience and Remote Sensing Symp., IGARSS 2009, July 2009, vol. 2, pp. II-238II-241.
    19. 19)
    20. 20)
      • 1. Rodriguez-Cassola, M., Prats, P., Baumgartner, S., et al: ‘New processing approach and results for bistatic TerraSAR-X/f-SAR spaceborne–airborne experiments’. 2009 IEEE Int. Geoscience and Remote Sensing Symp., IGARSS 2009, July 2009, vol. 2, pp. II-242II-245.
    21. 21)
    22. 22)
      • 27. Loffeld, O., Hein, A., Schneider, F.: ‘SAR focusing: scaled inverse Fourier transformation and chirp scaling’. 1998 IEEE Int. Geoscience and Remote Sensing Symp. Proc., 1998. IGARSS'98, July 1998, vol. 2, pp. 630632.
    23. 23)
    24. 24)
    25. 25)
      • 5. Klare, J., Walterscheid, I., Brenner, A., Ender, J.H.G.: ‘Evaluation and optimisation of configurations of a hybrid bistatic SAR experiment between TerraSAR-X and PAMIR’. IEEE Int. Conf. on Geoscience and Remote Sensing Symp., 2006. IGARSS 2006, July 2006, pp. 12081211.
    26. 26)
    27. 27)
    28. 28)
      • 22. Cumming, I., Wong, F.: ‘Digital processing of synthetic aperture radar data algorithms and implementation’ (Artech House, Norwood, MA, 2005).
    29. 29)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2014.0196
Loading

Related content

content/journals/10.1049/iet-spr.2014.0196
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading