access icon free Modelling and forecasting of signal-to-interference plus noise ratio in femtocellular networks using logistic smooth threshold autoregressive model

The aim of this paper is to present a non-linear statistical model to fit and forecast the signal-to-interference plus noise ratio (SINR) in two-tier heterogeneous cellular networks which consist of macrocells and femtocells. Since in these networks the number and locations of femtocell base stations (FBS) are variable, SINR forecasting can be useful in some areas such as power control and handover management. So far, linear autoregressive (AR) models have commonly been used in forecasting the received signal strength (rss) in macrocellular networks. However, AR modelling results in high mean square error (MSE) when data are non-linear. This paper focuses on SINR which takes into account signal strength, interference and noise effects. Moreover, macro-femto cellular network is considered. The F-test results show that the SINR data are non-linear, leading to use non-linear models instead of AR model. A non-linear logistic smooth threshold AR (LSTAR) model is utilised to model and forecast the SINR data. Kolmogorov–Smirnov (K-S) test demonstrates that LSTAR provides good fitness to the SINR samples. The results indicate that LSTAR model achieves much better performance in modelling and forecasting of SINR data than the AR model.

Inspec keywords: statistical testing; autoregressive processes; nonlinear estimation; least mean squares methods; interference suppression; forecasting theory; femtocellular radio

Other keywords: nonlinear statistical model; LSTAR model; noise effects; mean square error method; nonlinear logistic smooth threshold autoregressive model; received signal strength; F-test; AR modelling; femtocell base stations; Kolmogorov–Smirnov test; two tier heterogeneous cellular networks; macro-femto cellular network; interference effects; SINR forecasting; signal-to-interference plus noise ratio

Subjects: Interpolation and function approximation (numerical analysis); Signal processing and detection; Mobile radio systems; Other topics in statistics; Electromagnetic compatibility and interference

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
      • 8. Semmelrodt, S., Kattenbach, R.: ‘Investigation of different fading forecast schemes for flat fading radio channels’. 2003 IEEE 58th Vehicular Technology Conf., 2003. VTC 2003-Fall., 2003, pp. 149153.
    5. 5)
      • 10. Eyceoz, T., Hu, S., Duel-Hallen, A.: ‘Performance analysis of long range prediction for fast fading channels’. Proc. of the 33rd CISS, 1999.
    6. 6)
    7. 7)
      • 21. Recommendation I.: ‘1225, ‘Guidelines for evaluation of radio transmission technologies for IMT-2000’’ (International Telecommunication Union, 1997).
    8. 8)
    9. 9)
    10. 10)
      • 31. Wahlström, S.: ‘Comparing forecasts from LSTAR and linear autoregressive models’, 2004, available at http//:www.leg.ufpr.br.
    11. 11)
      • 7. Chatfield, C.: ‘Time-series forecasting’ (Chapman and Hall/CRC, USA, 2002).
    12. 12)
    13. 13)
      • 2. Zahir, T., Arshad, K., Ko, Y., Moessner, K.: ‘A downlink power control scheme for interference avoidance in femtocells’. 2011 Seventh Int. Wireless Communications and Mobile Computing Conf. (IWCMC), 2011, pp. 12221226.
    14. 14)
    15. 15)
      • 27. Stone, M., Brooks, R.J.: ‘Continuum regression: cross-validated sequentially constructed prediction embracing ordinary least squares, partial least squares and principal components regression’, J. R. Stat. Soc. B, (Methodol.), 1990, 52, pp. 237269.
    16. 16)
    17. 17)
      • 17. Lee, P., Lee, T., Jeong, J., Shin, J.: ‘Interference management in LTE femtocell systems using fractional frequency reuse’. 2010 12th Int. Conf. on Advanced Communication Technology (ICACT), 2010, pp. 10471051.
    18. 18)
    19. 19)
      • 16. Novlan, T., Andrews, J.G., Sohn, I., Ganti, R.K., Ghosh, A.: ‘Comparison of fractional frequency reuse approaches in the OFDMA cellular downlink’. 2010 IEEE Global Telecommunications Conf. (GLOBECOM 2010), 2010, pp. 15.
    20. 20)
      • 28. Shi, Y., Eberhart, R.: ‘A modified particle swarm optimizer’. The 1998 IEEE Int. Conf. on Evolutionary Computation Proc., 1998. IEEE World Congress on Computational Intelligence., 1998, pp. 6973.
    21. 21)
      • 32. Granger, C.W., Terasvirta, T.: ‘Modelling non-linear economic relationships’ (OUP Catalogue, 1993).
    22. 22)
    23. 23)
      • 5. Franses, P.H., Van Dijk, D.: ‘Non-linear time series models in empirical finance’ (Cambridge University Press, New York, USA, 2000).
    24. 24)
      • 12. Tong, H., Lim, K.S.: ‘Threshold autoregression, limit cycles and cyclical data’, J. R. Stat. Soc.. Ser. B (Methodol.), 1980, 42, pp. 245292.
    25. 25)
    26. 26)
      • 9. Long, X., Sikdar, B.: ‘A wavelet based long range signal strength prediction in wireless networks’. 2008 IEEE Int. Conf. on Communications, ICC'08, 2008, pp. 20432047.
    27. 27)
    28. 28)
      • 30. Choqueuse, V., Yao, K., Collin, L., Burel, G.: ‘Blind detection of the number of communication signals under spatially correlated noise by ICA and KS tests’. 2008 IEEE Int. Conf. on Acoustics, Speech and Signal Processing, ICASSP 2008, 2008, pp. 23972400.
    29. 29)
    30. 30)
    31. 31)
      • 11. Tong, H.: ‘On a threshold model’ (Sijthoff & Noordhoff, 1978).
    32. 32)
      • 6. Box, G.E., Jenkins, G.M., Reinsel, G.C.: ‘Time series analysis: forecasting and control’ (John Wiley & Sons, USA, 2013).
    33. 33)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2014.0065
Loading

Related content

content/journals/10.1049/iet-spr.2014.0065
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading