access icon free Improved higher order robust distributions based on compressive sensing reconstruction

A general form of compressive sensing (CS)-based higher order time–frequency distributions (TFDs) is proposed. Non-linear time-varying spectrum analysis requires higher order TFDs, but they cannot produce efficient result in the presence of strong noisy pulses. Consequently, the time–frequency analysis needs to be combined with the L-statistics. When applied to the higher order local auto-correlation function, the L-statistics removes all possibly corrupted samples and just a small number of samples remains for distribution calculation. In the proposed approach the discarded information can be completely recovered using CS reconstruction. Owing to the use of higher order local auto-correlation function, the signal becomes locally sparse in the transform domain. Hence, the idea is to cast all noisy samples as missing ones, then reconstruct the entire information and produce highly concentrated representation in the transform domain. The proposed CS-based distribution form provides significantly improved performance compared to the existing standard and L-estimate forms. It is proven by various experiments.

Inspec keywords: correlation methods; signal sampling; time-frequency analysis; Gaussian noise; compressed sensing; spectral analysis; signal reconstruction; impulse noise; transforms; estimation theory; higher order statistics; signal representation

Other keywords: TFD; Gaussian noise; transform domain; L-estimation; compressive sensing reconstruction; higher order time-frequency distribution; nonlinear time-varying spectrum analysis; improved higher order robust distribution; L-statistics; signal sampling; impulse noise; higher order local autocorrelation function; signal representation; CS

Subjects: Mathematical analysis; Integral transforms; Other topics in statistics; Signal processing and detection; Integral transforms; Other topics in statistics; Mathematical analysis; Signal processing theory

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
      • 28. Grant, M., Boyd, S., Ye, Y.: ‘CVX: Matlab software for disciplined convex programming’, 2001, http://www.cvxr.com/cvx/.
    5. 5)
      • 14. Huber, P.J.: ‘Robust statistics’ (John Wiley & Sons Inc., 1981).
    6. 6)
      • 5. Papandreou-Suppappola, A.: ‘Applications in time–frequency signal processing’ (CRC Press, 2003).
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
      • 4. Stankovic, S., Orovic, I., Sejdic, E.: ‘Multimedia signals and systems’ (Springer, 2012).
    14. 14)
      • 10. Lerga, J., Sucic, V., Boashash, B.: ‘An efficient algorithm for instantaneous frequency estimation of nonstationary multicomponent signals in low SNR’, EURASIP J. Adv. Signal, 2011, ASP/725189.
    15. 15)
    16. 16)
    17. 17)
    18. 18)
      • 33. Sejdic, E., Cam, A., Chaparro, L.F., Steele, C.M., Chau, T.: ‘Compressive sampling of swallowing accelerometry signals using time–frequency dictionaries based on modulated discrete Prolate spheroidal sequences’, EURASIP J. Adv. Signal Process., 2012:101doi:10.1186/1687-6180-2012-101.
    19. 19)
      • 32. Orovic, I., Stankovic, S., Amin, M.: ‘Compressive sensing for sparse time-frequency representation of nonstationary signals in the presence of impulsive noise’, SPIE Defense, Security and Sensing, Baltimore, Maryland, United States, 2013.
    20. 20)
      • 26. Candes, E., Romberg, J.: ‘L1-magic: ‘Recovery of Sparse Signals via Convex Programming’, http://www.acm.caltech.edu/l1magic/\#code, 2005, pp. 119.
    21. 21)
    22. 22)
    23. 23)
      • 3. Stankovic, L., Dakovic, M., Thayaparan, T.: ‘Time–frequency signal analysis with applications’ (Artech House, Boston, 2012).
    24. 24)
    25. 25)
    26. 26)
      • 16. Pitas, I., Venetsanopoulos, A.N.: ‘Nonlinear digital filters: principles and applications’ (Kluwer, 1990).
    27. 27)
    28. 28)
      • 35. Stankovic, L., Djurovic, I., Ohsumi, A., Ijima, H.: ‘Instantaneous frequency estimation by using Wigner distribution and Viterbi Algorithm’. Proc. IEEE ICASSP, 2003, 6, pp. 121124.
    29. 29)
    30. 30)
      • 2. Boashash, B.: ‘Time–frequency signal analysis and processing’ (Elsevier, Amsterdam, 2003).
    31. 31)
    32. 32)
    33. 33)
      • 27. Boyd, S.P., Vandenberghe, L.: ‘Convex optimization’ (Cambridge Univ. Press, 2004).
    34. 34)
      • 31. Stankovic, S., Orovic, I., Amin, M.: ‘Compressed sensing based robust time–frequency representation for signals in heavy-tailed noise’. Proc. Int. Conf. on Information Science, Signal Processing and their Applications (ISSPA), Canada, 2012, pp. 605610.
    35. 35)
    36. 36)
    37. 37)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2013.0347
Loading

Related content

content/journals/10.1049/iet-spr.2013.0347
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading