access icon free Amplitude-phase discontinuity calibration for phased array radar in varying jamming environment

The amplitude-and-phase error (APE) between phased array channels is notorious in radar signal processing. This error can cause an inaccurate estimate of unknown steering vector of the target echo signal and eventually result in amplitude-phase discontinuity of the phased array output. Thus, how to handle the APE is a meaningful problem, particularly for the varying jamming environment, of which the signal-to-noise ratio is very low. In this study, the authors have developed a new method to obtain real-time amplitude and phase differences between two consecutive weight update periods based on the accurate estimation of steering vector. Such differences can be used to obtain a real-time weight vector with negligible amplitude-phase distortions, and hence improves the phased array signal-processing performance. The proposed method is very flexible: it works well in different array configurations, such as linear, rectangular and Y-shape arrays, and can be efficiently implemented in any eigenstructure-based direction-of-arrival system.

Inspec keywords: radar cross-sections; phase estimation; direction-of-arrival estimation; jamming; calibration; error analysis; radar signal processing; array signal processing; phased array radar; eigenvalues and eigenfunctions

Other keywords: phased array signal processing performance; phased array radar; phase difference; signal-to-noise ratio; phased array channels; amplitude-and-phase error; consecutive weight update period; target echo signal; unknown steering vector estimation accuracy; varying jamming environment; eigenstructure-based direction-of-arrival system; radar signal processing; amplitude difference; APE; array conflgurations; amplitude-phase discontinuity calibration; amplitude-phase distortion; weight vector

Subjects: Radar equipment, systems and applications; Signal processing and detection; Linear algebra (numerical analysis); Measurement standards and calibration; Other topics in statistics; Electromagnetic compatibility and interference

References

    1. 1)
      • 20. Han, Y.-t., Cui, W., Pan, W.-p., Wang, J.: ‘Multi-baseline interferometer broadband real-time phase calibration method’. Proc. Fourth Int. Congress on Image and Signal Processing (CISP), Shanghai, China, October 2011, pp. 26072611.
    2. 2)
    3. 3)
    4. 4)
      • 23. Jinghua, G., Guang, L., Jinpei, Y.: ‘Channel calibration of amplitude-phase errors of DBF transmitter based on maximum likelihood estimation’. Proc. Int. Conf. Networks Security, Wireless Communications and Trusted Computing, Wuhan, Hubei, April 2009, pp. 378381.
    5. 5)
      • 19. Kato, T., Taguchi, R., Umezaki, T.: ‘Correcting phase distortion of phase shifting method’. Proc. IEEE First Global Conf. Consumer Electronics (GCCE), Tokyo, Japan, October 2012, pp. 288292.
    6. 6)
      • 14. Wahlberg, B., Ottersten, B., Viberg, M.: ‘Robust signal parameter estimation in the presence of array perturbations’. Proc. 16th IEEE Int. Conf. Acoustics Speech Signal Processing (ICASSP), Toronto, ON, April 1991, pp. 32773280.
    7. 7)
      • 1. Yongliang, W., Hui, C., Yingning, P., Qun, W.: ‘The methods and algorithms of spatial spectrum estimation’ (Tsinghua University, Beijing, 2004).
    8. 8)
      • 3. Demin, T.: ‘Analysis on the factors influencing the direction-finding precision of interferometer direction-finding receiver’, Shipboard Electron. Countermeas., 2010, 33, (2), pp. 4548.
    9. 9)
      • 21. Wang, J., Song, Y.: ‘Self-calibration algorithm for the amplitude and phase error of the multiple beam antenna’. Proc. Int. Conf. Computational Intelligence and Software Engineering, Wuhan, China, December 2009, pp. 13.
    10. 10)
      • 4. Xicai, S., Jiling, X.: ‘Calibration method for array antenna channel uncertainty using instrumental sensor’, Syst. Eng. Electron., 2007, 29, (7), pp. 10451048.
    11. 11)
      • 18. Kalyanaraman, S.K., Braasch, M.S.: ‘GPS adaptive array phase compensation using a software radio architecture’, Navig.: J. ION., 2010, 57, (1), pp. 5368.
    12. 12)
      • 7. Cichocki, A., Amari, S.: ‘Adaptive blind signal and image proceeding’ (John Wiley & Sons, 2002).
    13. 13)
      • 11. Sng, Y., Li, Y.: ‘Fast algorithm for gain and phase error calibration of linear equi-spaced (LES) array’. Proc. Fifth IEEE Int. Conf. Signal Processing, Beijing, China, August 2000, pp. 441444.
    14. 14)
      • 2. Zhang, G., Zhao, Y.: ‘Theory of phased array radar’ (Publishing House of Electronics Industry, Beijing, 2007).
    15. 15)
    16. 16)
      • 26. Cumming, I.G., Wong, F.H.: ‘Digital processing of synthetic aperture radar data: algorithms and implementation’ (Artech House, 2005).
    17. 17)
    18. 18)
      • 24. Godara, L.C.: ‘Smart antennas’ (CRC Press, London, 2004).
    19. 19)
    20. 20)
    21. 21)
      • 25. Dong, W., Zhenggan, Z., Xiansheng, N.: ‘Application of linear frequency modulation pulse compression in air-coupled ultrasonic testing’. Proc. Second Int. Conf. Advanced Computer Control (ICACC), Shenyang, China, March 2010, pp. 5357.
    22. 22)
    23. 23)
    24. 24)
      • 5. Shijin, C.: ‘Research on calibration of auto-tracking phased array receive system’, Radio Eng. China, 2008, 38, (11), pp. 3133.
    25. 25)
    26. 26)
      • 22. Zhao, Y.: ‘A new amplitude and phase calibration method for space-based phased array TT&C communication system’. Proc. Int. Symp. Information Engineering and Electronic Commerce, Ternopil, Ukraine, May 2009, pp. 768772.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2013.0308
Loading

Related content

content/journals/10.1049/iet-spr.2013.0308
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading