access icon free Unconstrained linear combination of even mirror Fourier non-linear filters

In this study, the unconstrained linear combination of the outputs of even mirror Fourier non-linear filters is considered. These filters are new members of the class of causal, shift-invariant, finite-memory and linear-in-the parameters non-linear filters. Their name derives from the even symmetry of their trigonometric basis functions. Even mirror Fourier non-linear filters are universal approximators for causal, time invariant, finite-memory and continuous non-linear systems. Moreover, their basis functions are mutually orthogonal for white uniform input signals in the interval [−1, +1]. The authors show in this study how to exploit these characteristics, in the framework of the unconstrained linear combination of non-linear filters, for modelling unknown non-linear systems. In particular, they show that the filters whose outputs are combined can be adapted avoiding the choice of the step sizes, by using a simple algorithm presented in this study. The analysis of the proposed structures is accompanied by a set of simulation results that confirm the good performance obtained in different situations.

Inspec keywords: nonlinear filters

Other keywords: shift-invariant nonlinear filter; causal nonlinear filter; finite-memory nonlinear filter; unconstrained linear combination; trigonometric basis functions; even mirror Fourier nonlinear filters; continuous nonlinear systems; universal approximators; linear-in-the parameter nonlinear filters

Subjects: Filtering methods in signal processing; Signal processing theory

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
      • 11. Sayed, A.H.: ‘Fundamentals of adaptive filtering’ (Wiley, NewYork, 2003).
    15. 15)
      • 7. Roy, E., Stewart, R.W., Durrani, T.S.: ‘Higher order system identification with second order Volterra IIR filters’, IEEE Signal Process. Lett., 1996, 3, (10), pp. 276279 (doi: 10.1109/97.540071).
    16. 16)
      • 12. Haykin, S.: ‘Adaptive filter theory’ (Prentice-Hall, Upper Saddle River, New Jersey, 2001, 4th edn.).
    17. 17)
      • 1. Mitra, S.K., Sicuranza, G.L. (Eds.): ‘Nonlinear image processing’ (San Diego: Academic Press, 2001).
    18. 18)
      • 21. Carini, A., Sicuranza, G.L.: ‘Even mirror Fourier nonlinear filters’. Proc. of ICASSP 2013, Vancouver, Canada, 26–31 May 2013.
    19. 19)
      • 13. Niedzwiecki, M.: ‘Identification of nonstationary stochastic systems using parallel estimation schemes’, IEEE Trans. Autom. Control, 1990, 35, (3), pp. 329334 (doi: 10.1109/9.50350).
    20. 20)
      • 14. Arenas-Garcia, J., Figueiras-Vidal, A.R., Sayed, A.H.: ‘Mean-square performance of a convex combination of two adaptive filters’, IEEE Trans. Signal Process., 2006, 54, (3), pp. 10781090 (doi: 10.1109/TSP.2005.863126).
    21. 21)
      • 25. Benedetto, S., Biglieri, E., Castellani, V.: ‘Digital transmission theory’ (Prentice-Hall, Englewood Cliffs, New Jersey, 1987).
    22. 22)
      • 17. Kozat, S.S., Erdogan, A.T., Singer, A.C., Sayed, A.H.: ‘Steady-state MSE performance analysis of mixture approaches to adaptive filtering’, IEEE Trans. Signal Process., 2010, 58, (8), pp. 40504063 (doi: 10.1109/TSP.2010.2049650).
    23. 23)
      • 5. Mathews, V.J., Sicuranza, G.L.: ‘Polynomial signal processing’ (Wiley, New York, 2000).
    24. 24)
      • 8. Zhao, H., Zeng, X., Zhang, J.: ‘Adaptive reduced feedback FLNN nonlinear filter for active control of nonlinear noise processes’, Signal Process., 2010, 90, pp. 834847 (doi: 10.1016/j.sigpro.2009.09.001).
    25. 25)
      • 10. Sicuranza, G.L., Carini, A.: ‘On the BIBO stability condition of adaptive recursive FLANN filter with application to nonlinear active noise control’, IEEE Trans. Speech, Audio, Lang. Process., 2021, 20, (1), pp. 234245 (doi: 10.1109/TASL.2011.2159788).
    26. 26)
      • 2. Sicuranza, G.L., Carini, A.: ‘On a class of nonlinear filters’, in: Tabus, I., Egiazarian, K., Gabbouj, M., (Eds.), ‘Festschrift in Honor of Jaakko Astola on the Occasion of his 60th BirthdayTICSP series No. 47, Tampere2009, pp. 115144.
    27. 27)
      • 15. Bershad, N.J., Bermudez, J.C.M., Tourneret, J.: ‘An affine combination of two LMS adaptive filters – transient mean-square analysis’, IEEE Trans. Signal Process., 2008, 56, (5), pp. 18531864 (doi: 10.1109/TSP.2007.911486).
    28. 28)
      • 4. Das, D.P., Panda, G.: ‘Active mitigation of nonlinear noise processes using a novel filtered-s LMS algorithm’, IEEE Trans. Speech Audio Process., 2004, 12, pp. 313322 (doi: 10.1109/TSA.2003.822741).
    29. 29)
      • 24. Sicuranza, G.L., Carini, A.: ‘Nonlinear system identification by means of mixtures of linear-in-the-parameters nonlinear filters’. Proc. ISPA-13, Trieste, Italy, 4–6 September 2013.
    30. 30)
      • 6. Carini, A., Mumolo, E.: ‘Adaptive stabilization of recursive second order polynomial filters by means of a stability test’. Proc. of NSIP ‘95, 20–22 June 1995, Neos Marmaras, Halkidiki, Greece, pp. 939942.
    31. 31)
      • 23. Rudin, W.: ‘Principles of mathematical analysis’ (McGraw-Hill, New York, 1976).
    32. 32)
      • 3. Pao, Y.H.: ‘Adaptive pattern recognition and neural networks’ (Addison-Wesley, Reading, Mass, 1989).
    33. 33)
      • 18. Zhao, H., Zhang, J.: ‘Adaptively combined FIR and functional link artificial neural network equalizer for nonlinear communication channel’, IEEE Trans. Neural Netw., 2009, 20, (4), pp. 665674 (doi: 10.1109/TNN.2008.2011481).
    34. 34)
      • 19. George, N.V., Panda, G.: ‘On the development of adaptive hybrid active noise control system for effective mitigation of nonlinear noise’, Signal Process., 2012, 92, (2), pp. 509516 (doi: 10.1016/j.sigpro.2011.08.016).
    35. 35)
      • 16. Silva, M.T.M., Nascimento, V.H.: ‘Improving the tracking capability of adaptive filters via convex combination’, IEEE Trans. Signal Process., 2008, 56, (7), pp. 31373149 (doi: 10.1109/TSP.2008.919105).
    36. 36)
      • 22. Carini, A., Sicuranza, G.L.: ‘Fourier nonlinear filters’, Signal Process., 2014, 94, (1), pp. 183194 (doi: 10.1016/j.sigpro.2013.06.018).
    37. 37)
      • 20. Azpicueta-Ruiz, L.A., Zeller, M., Figueiras-Vidal, A.R., Arenas-Garcia, J., Kellermann, W.: ‘Adaptive combination of Volterra kernels and its application to nonlinear acoustic echo cancellation’, IEEE Trans. Speech, Audio, Lang. Process., 2011, 19, (1), pp. 97110 (doi: 10.1109/TASL.2010.2045185).
    38. 38)
      • 9. Sicuranza, G.L., Carini, A.: ‘Adaptive recursive FLANN filters for nonlinear active noise control’. Proc. of ICASSP 2011, Prague, Czech Republic, 22–27 May 2011, pp. 43124315.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2013.0256
Loading

Related content

content/journals/10.1049/iet-spr.2013.0256
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading