http://iet.metastore.ingenta.com
1887

Reconstruction of multidimensional bandlimited signals from multichannel samples in linear canonical transform domain

Reconstruction of multidimensional bandlimited signals from multichannel samples in linear canonical transform domain

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The linear canonical transform (LCT) has been shown to be a powerful tool for optics and signal processing. In this study, the authors address the problem of signal reconstruction from the multidimensional multichannel samples in the LCT domain. Firstly, they pose and solve the problem of expressing the kernel of the multidimensional LCT in the elementary functions. Then, they propose the multidimensional multichannel sampling (MMS) for the bandlimited signal in the LCT domain based on a basis expansion of an exponential function. The MMS expansion which is constructed by the ordinary convolution structure can reduce the effect of the spectral leakage and is easy to implement. Thirdly, based on the MMS expansion, they obtain the reconstruction method for the multidimensional derivative sampling and the periodic non-uniform sampling by designing the system filter transfer functions. Finally, the simulation results and the potential applications of the MMS are presented. Especially, the application of the multidimensional derivative sampling in the context of the image scaling about the image super-resolution is discussed.

References

    1. 1)
    2. 2)
      • K.R. Wolf . (1979)
        2. Wolf, K.R.: ‘Integral transforms in science and engineering’ (Plenum Press, New York, 1979).
        .
    3. 3)
    4. 4)
      • H.M. Ozaktas , Z. Zalevsky , M.A. Kutay . (2001)
        4. Ozaktas, H.M., Zalevsky, Z., Kutay, M.A.: ‘The fractional Fourier transform with applications in optics and signal processing’ (Wiley, New York, 2001).
        .
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
      • B. Deng , R. Tao , Y. Wang .
        15. Deng, B., Tao, R., Wang, Y.: ‘Convolution theorem for the linear canonical transform and their applications’, Sci. Chin., Inf. Sci., 2006, 49, (5), pp. 592603.
        . Sci. Chin., Inf. Sci. , 5 , 592 - 603
    16. 16)
    17. 17)
    18. 18)
      • J. Shi , X. Liu , N. Zhang .
        18. Shi, J., Liu, X., Zhang, N.: ‘Generalized convolution and product theorems associated whit linear canonical transform’, Signal Image Video Process., 2012, doi:10.1007/s11760–012-0348-7.
        . Signal Image Video Process.
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
      • R.J. Marks II . (1993)
        24. Marks II, R.J.: ‘Advanced topics in Shannon sampling and interpolation theory’ (Springer-Verlag, 1993).
        .
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
      • B.Z. Li , T.Z. Xu .
        29. Li, B.Z., Xu, T.Z.: ‘Spectral analysis of sampled signals in the linear canonical transform domain’, Math. Probl. Eng., 2012, 2012, pp. 118, Article ID 536464.
        . Math. Probl. Eng. , 1 - 18
    30. 30)
      • B.Z. Li , T.Z. Xu .
        30. Li, B.Z., Xu, T.Z.: ‘Sampling in the linear canonical transform domain’, Math. Probl. Eng., 2012, 2012, pp. 113, Article ID 504580.
        . Math. Probl. Eng. , 1 - 13
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
    40. 40)
    41. 41)
    42. 42)
    43. 43)
    44. 44)
    45. 45)
    46. 46)
    47. 47)
      • D.E. Dudgeon , R.M. Mersereau . (1984)
        47. Dudgeon, D.E., Mersereau, R.M.: ‘Multidimensional digital signal processing’ (Prentice-Hall, 1984), pp. 3651.
        .
    48. 48)
    49. 49)
    50. 50)
    51. 51)
    52. 52)
    53. 53)
    54. 54)
    55. 55)
    56. 56)
    57. 57)
    58. 58)
    59. 59)
    60. 60)
      • A. Hore , D. Ziou , F. Deschenes .
        60. Hore, A., Ziou, D., Deschenes, F.: ‘A new image scaling algorithm based on the sampling theorem of Papoulis and application to color images’. IEEE Fourth Int. Conf. on Image and Graphics, 2007, pp. 3944.
        . IEEE Fourth Int. Conf. on Image and Graphics , 39 - 44
    61. 61)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2013.0240
Loading

Related content

content/journals/10.1049/iet-spr.2013.0240
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address