access icon free Error probability upper bound for perfect sequences implemented with super-structured fibre Bragg gratings

The success of coherent optical code-division multiple-access (OCDMA) systems is strongly dependent on the optical encoder/decoder technology and on the selection of the correct OCDMA codes/sequences. For this reason, in this study, the authors present a method to implement perfect sequences with Super-Structured Fibre Bragg Gratings (SSFBGs). A new SSFBG power reflection model has been found. They have also derived a property that explains why the SSFBGs should use codes derived from m-sequences. Usually, OCDMA researchers try many different codes into SSFBGs in order to select the SSFBG encoders that result in lower error probability. In the authors work, they show that a SSFBG can be considered to be a perfect sequence encoder. For this reason, the codes written into the SSFBGs should be selected based on their new property. This property permits to design and select quickly the correct codes with low power contrast ratios. In addition, a new error probability upper bound, which is a function of the code family and of its power contrast ratio is also presented. With this new bound, it is not necessary to use an optical simulator to estimate the maximum bit error rate of an OCDMA system, if some power contrast ratios of the selected SSFBG code set are known.

Inspec keywords: optical fibres; code division multiple access; optical fibre communication; Bragg gratings; codes; code division multiplexing; error statistics

Other keywords: power contrast ratios; SSFBG code set; optical decoder technology; OCDMA systems; SSFBG power reflection model; optical encoder technology; super-structured fibre Bragg gratings; OCDMA codes; SSFBG encoders; OCDMA sequences; perfect sequence encoder; error probability upper bound; bit error rate; perfect sequences; coherent optical code-division multiple-access systems

Subjects: Multiplexing and switching in optical communication; Codes; Multiple access communication; Other topics in statistics

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
      • 12. Kitayama, K.I.: ‘Code division multiplexing lightwave networks based upon optical code conversion’, IEEE J. Sel. Areas Commun., 1998, 16, pp. 12091319 (doi: 10.1109/49.725198).
    22. 22)
      • 16. Jiang, Z., Seo, D., Yang, S., et al: ‘Four-user 10-Gb/s spectrally phase-coded O-CDMA system operating at ∼ 30 fJ/bit’, IEEE Photon. Tech. Lett., 2005, 17, pp. 705707 (doi: 10.1109/LPT.2004.840931).
    23. 23)
      • 5. Erdogan, T.: ‘Fiber grating spectra’, J. Lightwave Technol., 1997, 15, (8), pp. 12771294 (doi: 10.1109/50.618322).
    24. 24)
      • 21. Smith, E.D.J., Blaikei, R.J., Taylor, D.P.: ‘Performance enhancement of spectral-amplitude-coding optical CDMA using pulse-position modulation’, IEEE. Trans. Commun., 1998, 46, pp. 11761185 (doi: 10.1109/26.718559).
    25. 25)
      • 7. Teh, P.C., Ibsen, M., Fu, L.B., Lee, J.H., Yusoff, Z., Richardson, D.J.: ‘A 16-channel OCDMA system (4 OCDM x4WDM) based on 16-chip, 20 Gchip/s superstructure fiber Bragg gratings and DFB fiber laser transmitters’. Proc. Optical Fiber Communication Conf. (OFC'2002), Los Angeles, CA, 2002, pp. 600601.
    26. 26)
      • 8. Prucnal, P.R.: ‘Optical code division multiple access: fundamentals and applications’ (CRC Taylor & Francis, 2006).
    27. 27)
      • 27. Pereira, J., Silva, H.A.: ‘Orthogonal perfect discrete Fourier transform sequences’, IET J. Signal Process., 2012, 6, (2), pp. 107113 (doi: 10.1049/iet-spr.2010.0195).
    28. 28)
      • 14. Galli, S., Menendez, R., Narimanov, E., Prucnal, P.: ‘A novel method for increasing the spectral efficiency of optical CDMA’, IEEE Trans. Commun., 2008, 56, (12), pp. 21332144 (doi: 10.1109/TCOMM.2008.050640).
    29. 29)
      • 10. Marhic, M.E.: ‘Trends in optical CDMA’. Proc. Multigigabit Fiber Communication (SPIE), 1992, vol 1787, pp. 8098.
    30. 30)
      • 25. Pereira, J., Silva, H.A.: ‘A larger subset of pseudo-orthogonal spreading codes for WCDMA, techonline, available at http://www.eetimes.com/design/communications-design/4018072/A-Larger-Subset-of-Pseudo-Orthogonal-Spreading-Codes-for-WCDMA,December 2012.
    31. 31)
      • 13. Kitayama, K., Wada, N., Sotobayashi, H.: ‘Architectural considerations of photonic IP router based upon optical code correlation’, J. Lightwave Technol., 2000, 18, pp. 18341844 (doi: 10.1109/50.908749).
    32. 32)
      • 19. Hamanaka, T., Wang, X., Wada, N., Nishiki, A., Kitayama, K.: ‘Ten-user truly asynchronous gigabit OCDMA transmission experiment with a 511-chip SSFBG En/decoder’, J. Lightwave Technol., 2006, 24, (1), pp. 95102 (doi: 10.1109/JLT.2005.861126).
    33. 33)
      • 9. Salihi, J.A., Brackett, C.A.: ‘Code division multiple-access technique in optical fiber networks, part I: Fundamental principles and part II: systems performance analysis’, IEEE. Trans. Commun., 1989, 37, pp. 824842 (doi: 10.1109/26.31181).
    34. 34)
      • 4. Santoro, M.A., Prucnal, P.R.: ‘Asynchronous fiber optic LAN using CDMA and optical correlation’. Proc. IEEE, 1987, vol. 75, (9), pp. 13361338.
    35. 35)
      • 17. Leijtens, X.J.M., Kuhlow, B., Smi, M.K.: ‘Arrayed waveguide gratings’, available at http://www.alexandria.tue.nl/openaccess/Metis203741.pdf, accessed)April 2013, pp. 163.
    36. 36)
      • 26. Pursley, M.B.: ‘Performance evaluation of phase coded spread-spectrum multiple-access communication – Part 1: system analysis’, IEEE Trans. Commun., 1977, 25, (8), pp. 795799 (doi: 10.1109/TCOM.1977.1093915).
    37. 37)
      • 22. Wei, Z., Ghafouri-Shiraz, H., Shalaby, H.M.H.: ‘New code families for fiber-Bragg-grating-based spectral-amplitude-coding optical CDMA systems’, IEEE Photon. Technol. Lett., 2001, 13, pp. 890892 (doi: 10.1109/68.935838).
    38. 38)
      • 28. Pereira, J., Silva, H.A.: ‘Optimal design of perfect DFT sequences’, Phys. Commun., 2013, 7, (1), pp. 92104.
    39. 39)
      • 24. Sarwate, D., Pursley, M.: ‘Crosscorrelation properties of pseudorandom and related sequences’, Proc. IEEE, 1980, 68, (5), pp. 593619 (doi: 10.1109/PROC.1980.11697).
    40. 40)
      • 1. Lam, C.: ‘Passive optical networks, principles and practice’ (Elsevier, 2007).
    41. 41)
      • 3. Prucnal, P., Santoro, M., Fan, T.: ‘Spread spectrum fiber-optic local area network using optical processing’, IEEE J. Lightwave Technol., 1986, 4, (5), pp. 547554 (doi: 10.1109/JLT.1986.1074754).
    42. 42)
      • 18. Wang, X., Wada, N., Miyazaki, T., Cincotti, G., Kitayama, K.: ‘Asynchronous multiuser coherent OCDMA system with code-shift-keying and balanced detection’, IEEE J. Sel. Top. Quantum Electron., 2007, 13, (5), pp. 14631470 (doi: 10.1109/JSTQE.2007.897675).
    43. 43)
      • 2. Salehi, J.A., Weiner, A.M., Heritage, J.P.: ‘Coherent ultrashort light pulse code division multiple access communication schemes’, J. Lightwave Technol., 1990, 8, (3), pp. 478491 (doi: 10.1109/50.50743).
    44. 44)
      • 20. Wang, X., Matsushima, K., Nishiki, A., Wada, N., Kitayama, K.: ‘High reflectivity super structured FBG for coherent optical code generation and recognition’, Opt. Express, 2004, 12, (22), pp. 54575468 (doi: 10.1364/OPEX.12.005457).
    45. 45)
      • 6. Teh, P.C., Petropoulos, P., Ibsen, M., Richardson, D.J.: ‘A comparative study of the performance of seven- and 63-chip optical code-division multiple-access encoders and decoders based on superstructured fiber Bragg gratings’, J. Lightwave Technol., 2001, 9, pp. 13521365.
    46. 46)
      • 15. Okamoto, K.: ‘Tutorial review recent progress of integrated optics planar lightwave circuits’, Opt. Quantum Electron., 1999, 31, pp. 107129 (doi: 10.1023/A:1006975415469).
    47. 47)
      • 11. Huang, J.F., Yen, C.T., Tu, Y.W.: ‘Reduction of linear crosstalk over waveguide-grating-based optical CDMA coders/decoders’, J. Opt. Commun. Netw., 2010, 2, (11), pp. 975983 (doi: 10.1364/JOCN.2.000975).
    48. 48)
      • 29. Pursley, M.B., Sarwate, D.: ‘Performance evaluation of phase coded spread-spectrum multiple-access communication – Part II: code sequence analysis’, IEEE Trans. Commun., 1977, 25, (8), pp. 800803 (doi: 10.1109/TCOM.1977.1093916).
    49. 49)
      • 23. Tancevski, T., Rusch, L.A.: ‘Impact of the beat noise on the performance of 2-D optical CDMA systems’, IEEE Commun. Lett., 2000, 4, pp. 264266 (doi: 10.1109/4234.864189).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2012.0384
Loading

Related content

content/journals/10.1049/iet-spr.2012.0384
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading