access icon free Evolutionary and variable step size strategies for multichannel filtered-x affine projection algorithms

This study is focused on the necessity to improve the performance of the affine projection (AP) algorithm for active noise control (ANC) applications. The proposed algorithms are evaluated regarding their steady-state behaviour, their convergence speed and their computational complexity. To this end, different strategies recently applied to the AP for channel identification are proposed for multichannel ANC. These strategies are based either on a variable step size, an evolving projection order, or the combination of both strategies. The developed efficient versions of the AP algorithm use the modified filtered-x structure, which exhibits faster convergence than other filtering schemes. Simulation results show that the proposed approaches exhibit better performance than the conventional AP algorithm and represent a meaningful choice for practical multichannel ANC applications.

Inspec keywords: active noise control; computational complexity; evolutionary computation; filtering theory; convergence

Other keywords: steady-state behaviour; computational complexity; evolutionary strategies; multichannel ANC applications; convergence speed; variable step size strategies; filtering schemes; AP algorithm; active noise control applications; multichannel filtered-x affine projection algorithms; channel identification

Subjects: Optimisation techniques; Computational complexity; Signal processing theory; Optimisation techniques; Filtering methods in signal processing

References

    1. 1)
      • 1. Ozeki, K., Umeda, T.: ‘An adaptive filtering algorithm using an orthogonal projection to an affine subspace and its properties’, Electron. Commun. Jpn., 1984, J67-A, pp. 126132.
    2. 2)
      • 15. Arablouei, R., Dogançay, K.: ‘Affine projection algorithm with selective projections’, Signal Process., 2012, 92, (9), pp. 22532263 (doi: 10.1016/j.sigpro.2012.02.018).
    3. 3)
      • 13. Kong, N.W., Shin, J.W., Park, P.G.: ‘A two-stage affine projection algorithm with mean square error matching step sizes’, Signal Process., 2011, 91, (11), pp. 26392646 (doi: 10.1016/j.sigpro.2011.06.003).
    4. 4)
      • 10. Bjarnason, E.: ‘Active noise cancellation used a modified form of the filtered-x LMS algorithm’. Proc. Sixth Eur. Signal Process. Conf., 1992, vol. 2, pp. 10531056.
    5. 5)
      • 8. Kim, S.E., Kong, S.J., Song, W.J.: ‘An affine projection algorithm with evolving order’, IEEE Signal Process. Lett., 2009, 16, (11), pp. 937940 (doi: 10.1109/LSP.2009.2027638).
    6. 6)
      • 6. Shin, H., Sayed, A.: ‘Mean-square performance of a family of affine projection algorithms’, IEEE Trans. Signal Process., 2004, 52, (1), pp. 90102 (doi: 10.1109/TSP.2003.820077).
    7. 7)
      • 3. Tanaka, M., Kaneda, Y., Makino, S., Kojima, J.: ‘Fast projection algorithm and its step size control’. Proc. ICASSP95, Detroit, MI, May 1995, vol. 2, pp. 945948.
    8. 8)
      • 12. Bouchard, M.: ‘Multichannel affine and fast affine projection algorithms for active noise control and acoustic equalization systems’, IEEE Trans. Speech Audio Process., 2003, 11, (1), pp. 5460 (doi: 10.1109/TSA.2002.805642).
    9. 9)
      • 5. Liu, L., Fukumoto, M., Saiki, S., Zhang, S.: ‘A variable step-size proportionate affine projection algorithm for identification of sparse impulse response’, Eurasip J. Advan. Signal Process., 2009, pp. 110. DOI: 10.1155/2009/150914.
    10. 10)
      • 16. Albu, F., Paleologu, C., Benesty, J.: ‘A variable step size evolutionary affine projection algorithm’. Proc. IEEE Int. Conf. Acoustics, Speech, Signal Process.(ICASSP), Prague, Czech Republic, May 2011, pp. 429432.
    11. 11)
      • 17. Gonzalez, A., Ferrer, M., de Diego, M., Piñero, G.: ‘An affine projection algorithm with variable step size and projection order’, Digital Signal Process., 2012, 22, (4), pp. 586592 (doi: 10.1016/j.dsp.2012.03.004).
    12. 12)
      • 11. Douglas, S.C.: ‘The fast affine projection algorithm for active noise control’. Proc. 29th Annual Asilomar Conf. Signals, Syst., Comput., 1995.
    13. 13)
      • 14. Chang, M., Kong, N., Park, P.: ‘An affine projection algorithm based on reuse time of input vectors’, IEEE Signal Process. Lett., 2010, 17, (8), pp. 750753 (doi: 10.1109/LSP.2010.2053355).
    14. 14)
      • 4. Paleologu, C., Benesty, J., Ciochina, S.: ‘A variable step-size affine projection algorithm designed for acoustic echo cancellation’, IEEE Trans. Audio Speech Language Process., 2008, 16, (8), pp. 14661478 (doi: 10.1109/TASL.2008.2002980).
    15. 15)
      • 7. Kong, S.J., Hwang, K.Y., Song, W.J.: ‘An affine projection algorithm with dynamic selection of input vectors’, IEEE Signal Process. Lett., 2007, 14, (8), pp. 529532 (doi: 10.1109/LSP.2007.891325).
    16. 16)
      • 9. Kim, K.H., Choi, Y.S., Kim, S.E., Song, W.J.: ‘An affine projection algorithm with periodically evolved update interval’, IEEE Trans. Circuits Syst. II, 2011, 58, (11), pp. 763767 (doi: 10.1109/TCSII.2011.2168023).
    17. 17)
      • 2. Shin, H., Sayed, A.: ‘Variable step-size NLMS and affine projection algorithms’, IEEE Signal Process. Lett., 2004, 11, (2), pp. 132135 (doi: 10.1109/LSP.2003.821722).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2012.0213
Loading

Related content

content/journals/10.1049/iet-spr.2012.0213
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading