Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Joint space-time–frequency method based on fractional Fourier transform to estimate moving target parameters for multistatic synthetic aperture radar

In practice, the configuration of spaceborne multistatic synthetic aperture radar (MSAR) is generally three-dimensional (3D) stereo geometry, under which condition most current algorithms of motion parameter estimation are invalid. In this study, a joint space-time–frequency method is presented to estimate motion parameters of ground moving target for MSAR of 3D geometry. First, the array expression for azimuth echo named extended space-time model (ESTM) is derived; then on the basis of ESTM, a spatial time–frequency distribution method based on fractional Fourier transform algorithm is derived; finally the performance of the presented method is analysed, and the advantages comparing with velocity synthetic aperture radar are discussed via some computer simulations. The work provides a feasible method of multi-channel processing for the 3D MSAR.

References

    1. 1)
      • 16. Krim, H., Viberg, M.: ‘Two decades of array signal processing research: the parametric approach’, IEEE Signal Process. Mag., 1996, 13, (4), pp. 6794.
    2. 2)
      • 19. Belouchrani, A., Amin, M.G.: ‘Blind source separation based on time–frequency signal representations’, IEEE Trans. Signal Process., 1998, 46, (11), pp. 28882897.
    3. 3)
      • 5. Friedlander, B., Porat, B., VSAR: ‘A high resolution radar system for detection of moving targets’, IEE Proc., Radar Sonar Navig., 1997, 144, (4), pp. 205218.
    4. 4)
      • 4. Ender, J.: ‘Signal processing for multi-channel SAR applied to experimental SAR system AER’. Int. Radar Conf. RADAR'94, Paris, 1994, pp. 220225.
    5. 5)
      • 10. Li, G., Xu, J., Peng, Y.N., Xia, X.G.: ‘Location and imaging of moving targets using nonuniform linear antenna array SAR’, IEEE Trans. Aerosp. Electron. Syst., 2007, 43, (3), pp. 12141220.
    6. 6)
      • 15. Tao, R., Ping, X.J., Zhao, X.H., Wang, Y.: ‘Detection and estimation of moving targets based on fractional Fourier transform’. Proc. Sixth Int. Conf. on Signal Processing, 2002, 1, pp. 102105.
    7. 7)
      • 1. Krieger, G., Moreira, A.: ‘Spaceborne bi- and multistatic SAR: potential and challenges’, IEE Proc., Radar Sonar Navig., 2006, 153, pp. 184197.
    8. 8)
      • 14. Sun, H.-B., Liu, G.-S., Gu, H., Su, W.-M.: ‘Application of the fractional Fourier transform to moving target detection in airborne SAR’, IEEE Trans. Aerosp. Electron. Syst., 2002, 38, (4), pp. 14161424.
    9. 9)
      • 13. Prati, C., Rocca, F.: ‘Improving slant-range resolution with multiple SAR surveys’, IEEE Trans. Aerosp. Electron. Syst., 1993, 29, (1), pp. 135144.
    10. 10)
      • 17. Wu, H.Z., Tao, R.: ‘Broadband beamforming of LFM signal based on fractional Fourier transform’. Proc. Ninth Int. Conf. on Signal Processing, ICSP, 2008, pp. 296298.
    11. 11)
      • 3. Moreira, A., Krieger, G., Fiedler, H., et al.: ‘Advanced interferometric SAR techniques with TanDEM-X’. IEEE Radar Conf., 2008, pp. 15.
    12. 12)
      • 11. Sun, H.D., Zhang, L.Z., Jin, X.S.: ‘Parameter estimations based on DPCA-FrFT algorithm for three-channel SAR-GMTI system’. Int. Conf. Intelligent Computation Technology and Automation (ICICTA), 2011, 2, pp. 640644.
    13. 13)
      • 20. Pei, S.C., Ding, J.J.: ‘Closed-form discrete fractional and affine Fourier transform’, IEEE Trans. Signal Process., 2000, 48, (5), pp. 13381353.
    14. 14)
      • 6. Krieger, G., Fiedler, H., Mittermayer, J., Papathanassiou, K., Moreira, A.: ‘Analysis of multistatic configurations for spaceborne SAR interferometry’, IEE Proc., Radar Sonar Navig., 2003, 150, (3), pp. 8796.
    15. 15)
      • 2. Zhang, Y.H., Hajjari, A., Kyungjung, K., Himed, B.: ‘A dual-threshold ATI-SAR approach for detecting slow moving targets’. IEEE Int. Radar Conf., 2005, pp. 295299.
    16. 16)
      • 7. Kang, X.Y., Jiang, B.T., Zhang, Y.H., Yun, R.S.: ‘Performance analysis of STAP for spaceborne sparse array in the presence of amplitude and phase errors’. Proc. Seventh European Conf. on Synthetic Aperture Radar (EUSAR), 2008, pp. 14.
    17. 17)
      • 9. Raney, R.K.: ‘Synthetic aperture imaging radar and moving targets’, IEEE Trans. Aerosp. Electron. Syst., 1971, 7, (3), pp. 499505.
    18. 18)
      • 8. Maori, D.C., Ender, J.H.G.: ‘Performance analysis of multistatic configurations for spaceborne GMTI based on the auxiliary beam approach’, IEE Proc., Radar Sonar Navig., 2006, 153, (2), pp. 96103.
    19. 19)
      • 12. Barbarossa, S., Farina, A.: ‘Space-time–frequency processing of synthetic aperture radar signals’, IEEE Trans. Aerosp. Electron. Syst., 1994, 30, (2), pp. 341358.
    20. 20)
      • 18. Zhu, Z.B., Tang, Z.Y., Jiang, X.Z.: ‘Imaging algorithm of bistatic SAR with parallel track’, J. Electron. Inf. Technol., 2007, 29, (11), pp. 27022705, Chinese.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2011.0427
Loading

Related content

content/journals/10.1049/iet-spr.2011.0427
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address