access icon free Performance analysis of partial support recovery and signal reconstruction of compressed sensing

Recent work in the area of compressed sensing mainly focuses on the perfect recovery of the entire support for sparse signals. However, partial support recovery, where a part of the signal support is correctly recovered, may be adequate in many practical scenarios. In this study, in the high-dimensional and noisy setting, the authors develop the probability of partial support recovery of the optimal maximum-likelihood (ML) algorithm. When a large part of the support is available, the asymptotic mean-square-error (MSE) of the reconstructed signal is further developed. The simulation results characterise the asymptotic performance of the ML algorithm for partial support recovery, and show that there exists a signal-to-noise ratio (SNR) threshold, beyond which the increase of SNR cannot bring any obvious MSE gain.

Inspec keywords: compressed sensing; probability; signal reconstruction; maximum likelihood estimation; mean square error methods

Other keywords: signal reconstruction; sparse signals; asymptotic mean-square-error; partial support recovery; compressed sensing; MSE gain; SNR; optimal maximum-likelihood algorithm; ML algorithm

Subjects: Signal processing and detection; Signal processing theory; Other topics in statistics; Other topics in statistics; Interpolation and function approximation (numerical analysis); Interpolation and function approximation (numerical analysis)

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
      • 11. Hormati, A., Karbasi, A., Mohajer, S., Vetterli, M.: ‘An estimation theoretic approach for sparsity pattern recovery in the noisy setting’. arXiv preprint arXiv: 0911.4880, 2009.
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
      • 10. Reeves, G.: ‘Sparse signal sampling using noisy linear projections’. Master's thesis, EECS Department, University of California, Berkeley, 2008, Available at http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-3.html.
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
      • 3. Fletcher, A.K.: ‘Estimation via sparse approximation: error bounds and random frame analysis’. Master's thesis, University of California, Berkeley, 2005.
    19. 19)
      • 23. Tulino, A., Verdu, S.: ‘Random matrix theory and wireless communications’ (Publisher Inc., MS, 2004).
    20. 20)
      • 16. Gradshteyn, I.S., Ryzhik, I.M.: ‘Table of integrals, series and products’ (Academic Press, New York, 2000, 6th edn.).
    21. 21)
      • 13. Tropp, J.A., Gilbert, A.C.: ‘Signal recovery from random measurements via orthogonal matching pursuit’, IEEE Trans. Inf. Theory, 2007, 53, (12), pp. 46554666 (doi: 10.1109/TIT.2007.909108).
    22. 22)
      • 12. Rad, K.R.: ‘Nearly sharp sufficient conditions on exact sparsity pattern recovery’, IEEE Trans. Inf.Theory, 2011, 57, (7), pp. 46724679 (doi: 10.1109/TIT.2011.2145670).
    23. 23)
      • 5. Ba, K.D., Indyk, P.: ‘Sparse recovery with partial support knowledge’. Proc. 14th Int. Workshop and 15th Int. Conf. Approximation, Randomization, and Combinatorial Optimization: Algorithms and Techniques, 2011, pp. 2637.
    24. 24)
      • 14. Needell, D., Tropp, J.A.: ‘CoSaMP: iterative signal recovery from incomplete and inaccurate samples’, Appl. Comput. Harmon. Anal., 2009, 26, (3), pp. 301321 (doi: 10.1016/j.acha.2008.07.002).
    25. 25)
      • 20. Nagaraja, H.N., Abo-Eleneen, Z.A.: ‘Fisher information in order statistics’, Pakistan J. Stat., 2003, 19, (1), pp. 161173.
    26. 26)
      • 11. Hormati, A., Karbasi, A., Mohajer, S., Vetterli, M.: ‘An estimation theoretic approach for sparsity pattern recovery in the noisy setting’. arXiv preprint arXiv: 0911.4880, 2009.
    27. 27)
      • 1. Wang, W., Wainwright, M.J., Ramchandran, K.: ‘Information theoretic limits on sparse signal recovery: dense versus sparse measurement matrices’, IEEE Trans. Inf. Theory, 2010, 56, (6), pp. 29672979 (doi: 10.1109/TIT.2010.2046199).
    28. 28)
      • 21. Nielsen, J.: ‘The distribution of volume reductions induced by isotropic random projections’, Adv. Appl. Probab., 1999, 31, (4), pp. 985994 (doi: 10.1239/aap/1029955254).
    29. 29)
      • 7. Jacques, L.: ‘A short note on compressed sensing with partially known signal support’, Signal Process., 2010, 90, (12), pp. 33083312 (doi: 10.1016/j.sigpro.2010.05.025).
    30. 30)
      • 19. Stankovic, S., Orovic, I., Amin, M.: ‘L-statistics based modification of reconstruction algorithms for compressive sensing in the presence of impulse noise’, Signal Process., 2013, 93, (11), pp. 29272931 (doi: 10.1016/j.sigpro.2013.04.022).
    31. 31)
      • 8. Akcakaya, M., Tarokh, V.: ‘Noisy compressive sampling limits in linear and sublinear regimes’. Proc. Conf. Information Sciences and Systems, 2008, pp. 14.
    32. 32)
      • 6. Friedlander, M.P., Mansour, H., Saab, R., Yilmaz, O.: ‘Recovering compressively sampled signals using partial support information’, IEEE Trans. Inf. Theory, 2012, 58, (2), pp. 11221134 (doi: 10.1109/TIT.2011.2167214).
    33. 33)
      • 3. Fletcher, A.K.: ‘Estimation via sparse approximation: error bounds and random frame analysis’. Master's thesis, University of California, Berkeley, 2005.
    34. 34)
      • 17. Xu, W., Lin, J., Niu, K., He, Z.: ‘On the performance of compressed sensing with partially correct support’, Wirel. Pers. Commun., 2013, 69, (4), pp. 18771884 (doi: 10.1007/s11277-012-0668-5).
    35. 35)
      • 9. Akcakaya, M., Tarokh, V.: ‘Shannon theoretic limits on noisy compressive sampling’, IEEE Trans. Inf. Theory, 2010, 56, (1), pp. 492504 (doi: 10.1109/TIT.2009.2034796).
    36. 36)
      • 2. Fletcher, A.K., Rangan, S., Goyal, V.K.: ‘Necessary and sufficient conditions for sparsity pattern recovery’, IEEE Trans. Inf. Theory, 2009, 55, (12), pp. 57585772 (doi: 10.1109/TIT.2009.2032726).
    37. 37)
      • 22. Evans, J., Tse, D.N.C.: ‘Large system performance of linear multiuser receivers in multipath fading channels’, IEEE Trans. Inf. Theory, 2000, 46, (6), pp. 20592078 (doi: 10.1109/18.868478).
    38. 38)
      • 18. Stankovic, L.J., Stankovic, S., Orovic, I., Amin, M.: ‘Robust time-frequency analysis based on the L-estimation and compressive sensing’, IEEE Signal Process. Lett., 2013, 20, (5), pp. 499502 (doi: 10.1109/LSP.2013.2252899).
    39. 39)
      • 10. Reeves, G.: ‘Sparse signal sampling using noisy linear projections’. Master's thesis, EECS Department, University of California, Berkeley, 2008, Available at http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-3.html.
    40. 40)
      • 4. Vaswani, N., Lu, W.: ‘Modified-CS: modifying compressive sensing for problems with partially known support’, IEEE Trans. Signal Process., 2010, 58, (9), pp. 45954607 (doi: 10.1109/TSP.2010.2051150).
    41. 41)
      • 15. Chen, S.S., Donoho, D.L., Saunders, M.A.: ‘Atomic decomposition by basis pursuit’, SIAM J. Sci. Comput., 1999, 20, (1), pp. 3361 (doi: 10.1137/S1064827596304010).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2011.0205
Loading

Related content

content/journals/10.1049/iet-spr.2011.0205
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading