Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Near-binary multisine design with arbitrary sparse spectrum for fast BIS measurement

Bioimpedance spectroscopy (BIS) measurement is widely used in various biological medical applications. Broadband excitation signals with sparse spectra can be beneficial to increasing the signal-to-noise ratio (SNR) and decreasing the time of BIS measurements. This study introduces a rapid synthesis method to generate near-binary multisines (NBMs) with arbitrary sparse spectra that have the advantage of lower crest factor and less aliasing compared with the traditional multisines or binary signals. One of the NBM examples, abbreviated as Quasi-Log-Flat-19, which contains 19 quasi-logarithmical and flat desired components from 1 kHz to 1 MHz is used as the voltage source or the current source for BIS measurements (only 1 ms required). The results show that the impedance SNR by using Quasi-Log-Flat-19 (68.9 dB in average from the voltage source and 63.5 dB in average from the current source) is always higher in comparison of the corresponding optimised multisine with the same desired spectrum (65.1 dB in average from the voltage source and 58.5 dB in average from the current source). It can be concluded that NBMs can be used as good alternatives to traditional optimised multisines with sparse spectrum distribution in fast BIS measurement.

References

    1. 1)
      • 31. Sanchez, B., Bragos, R., Vandersteen, G.: ‘Influence of the multisine excitation amplitude design for biomedical applications using impedance spectroscopy’. 2011 Annual Int. Conf. IEEE Engineering in Medicine and Biology Society, 2011.
    2. 2)
      • 7. Ojarand, J., Annus, P., Min, M., et al: ‘Optimization of multisine excitation for a bioimpedance measurement device’. Proc. 2014 IEEE Int. Instrumentation and Measurement Technology Conf. (I2MTC), 2014.
    3. 3)
      • 33. Sanchez, B., Rojas, C.: ‘Robust excitation power spectrum design for broadband impedance spectroscopy’, Meas. Sci. Technol., 2014, 25, (6), p. 065501.
    4. 4)
      • 15. Sánchez Terrones, B., Bragós Bardia, R.: ‘Multifrequency simultaneous bioimpedance measurements using multitone burst signals for dynamic tissue characterization’. XIVth Int. Conf. Electrical Bioimpedance, 2010.
    5. 5)
      • 9. Sanchez, B., Li, J., Geisbush, T., et al: ‘A pilot spectroscopy study on time-varying bioimpedance during electrically-induced muscle contraction’. IEEE 2014 36th Annual Int. Conf. Engineering in Medicine and Biology Society (EMBC), 2014.
    6. 6)
      • 8. Koivumäki, T., Vauhkonen, M., Kuikka, J.T., et al: ‘Bioimpedance-based measurement method for simultaneous acquisition of respiratory and cardiac gating signals’, Physiol. Meas., 2012, 33, (8), pp. 13231334.
    7. 7)
      • 14. Vilkko, M., Roinila, T.: ‘Designing maximum length sequence signal for frequency response measurement of switched mode converters’. Nordic Workshop on Power and Industrial Electronics, Espoo, Finland, 2008.
    8. 8)
      • 34. Sanchez, B., Rojas, C. R., Vandersteen, G., et al: ‘On the calculation of the D-optimal multisine excitation power spectrum for broadband impedance spectroscopy measurements’, Meas. Sci. Technol., 2012, 23, (8), pp. 755766.
    9. 9)
      • 21. Van, D.O.E., Schoukens, J., Renneboog, J.: ‘Peak factor minimization using a time–frequency domain swapping algorithm’, IEEE Trans. Instrum. Meas., 1988, 37, (1), pp. 145147.
    10. 10)
      • 2. Grewal, P.K., Golnaraghi, F.: ‘Pilot study: electrical impedance based tissue classification using support vector machine classifier’, IET Sci. Meas. Technol., 2014, 8, (6), pp. 579587.
    11. 11)
      • 11. Bouchaala, D., Mekki, E., Günther, T., et al: ‘Study of excitation signals parameters for portable bioimedical devices’. 2015 IEEE Int. Instrumentation and Measurement Technology Conf. (I2MTC), 2015.
    12. 12)
      • 35. Ojarand, J., Land, R., Min, M.: ‘Comparison of spectrally sparse excitation signals for fast bioimpedance spectroscopy: in the context of cytometry’. 2012 IEEE Int. Symp. Medical Measurements and Applications Proc. (MeMeA), 2012.
    13. 13)
      • 12. Yang, Y., Wang, L., Wang, P., et al: ‘Design of tri-level excitation signals for broadband bioimpedance spectroscopy’, Physiol. Meas., 2015, 36, (9), pp. 19952007.
    14. 14)
      • 13. Sanchez, B., Vandersteen, G., Bragos, R., et al: ‘Basics of broadband impedance spectroscopy measurements using periodic excitations’, Meas. Sci. Technol., 2012, 23, (10), p. 105501.
    15. 15)
      • 3. Gargiulo, G.D., Cohen, G., McEwan, A.L., et al: ‘Active electrode design suitable for simultaneous EIT and EEG’, Electron. Lett., 2012, 48, (25), pp. 15831584.
    16. 16)
      • 29. Yang, Y., Kang, M., Lu, Y., et al: ‘Design of a wideband excitation source for fast bioimpedance spectroscopy’, Meas. Sci. Technol., 2010, 22, (1), p. 013001.
    17. 17)
      • 10. Ojarand, J., Rist, M., Min, M.: ‘Enhanced optimization of the wideband excitation signal for a bioimpedance measurement’. 2015 IEEE Int. Instrumentation and Measurement Technology Conf. (I2MTC), 2015.
    18. 18)
      • 17. Sanchez, B., Vandersteen, G., Bragos, R., et al: ‘Optimal multisine excitation design for broadband electrical impedance spectroscopy’, Meas. Sci. Technol., 2011, 22, (11), p. 115601.
    19. 19)
      • 36. Paavle, T., Min, M., Trebbels, D.: ‘Low-energy chirps for bioimpedance measurement’. Int. Conf. Telecommunications and Signal Processing, 2011.
    20. 20)
      • 16. Martens, O., Land, R., Min, M., et al: ‘Improved impedance analyzer with binary excitation signals’. 2015 IEEE Ninth Int. Symp. Intelligent Signal Processing (WISP), 2015.
    21. 21)
      • 19. Schroeder, M.: ‘Synthesis of low-peak-factor signals and binary sequences with low autocorrelation (corresp.)’, IEEE Trans. Inf. Theory, 1970, 16, (1), pp. 8589.
    22. 22)
      • 30. Zhang, F., Teng, Z., Zhong, H., et al: ‘Wideband mirrored current source design based on differential difference amplifier for electrical bioimpedance spectroscopy’, Biomed. Phys. Eng. Express, 2017, https://doi.org/10.1088/2057-1976/aaa9cd.
    23. 23)
      • 24. Ojarand, J., Min, M.: ‘Simple and efficient excitation signals for fast impedance spectroscopy’, Elektron. Elektrotech., 2013, 19, (2), pp. 4952.
    24. 24)
      • 18. Ojarand, J., Min, M.: ‘Efficient excitation signals for the fast impedance spectroscopy’, Elektron. Elektrotech., 2014, 20, (5), pp. 144149.
    25. 25)
      • 5. Warren, M., Bragos, R., Casas, O., et al: ‘Percutaneous electrocatheter technique for on-line detection of healed transmural myocardial infarction’, Pacing Clin. Electrophysiol., 2000, 23, (8), pp. 12831287.
    26. 26)
      • 23. Yang, Y., Zhang, F., Tao, K., et al: ‘An improved crest factor minimization algorithm to synthesize multisines with arbitrary spectrum’, Physiol. Meas., 2015, 36, (5), pp. 895910.
    27. 27)
      • 4. Pintelon, R., Schoukens, J.: ‘System identification: a frequency domain approach’ (John Wiley & Sons, Hoboken, New Jersey, 2012, 2nd edn.), pp. 154155.
    28. 28)
      • 32. Popkirov, G., Schindler, R.: ‘Optimization of the perturbation signal for electrochemical impedance spectroscopy in the time domain’, Rev. Sci. Instrum., 1993, 64, (11), pp. 31113115.
    29. 29)
      • 26. Land, R., Annus, P., Min, M., et al: ‘Method and device for broadband analysis of systems and substances’. US Patent 20,130,054,178, 2013.
    30. 30)
      • 27. Ojarand, J., Rist, M., Min, M.: ‘Comparison of excitation signals and methods for a wideband bioimpedance measurement’. 2016 IEEE Int. Instrumentation and Measurement Technology Conf. Proc., 2016.
    31. 31)
      • 1. Hussain, R., Kappel, F., Zhu, F., et al: ‘Body composition and solute kinetics in hemodialysis patients, a mathematical model’, IET Commun., 2012, 6, (18), pp. 33013308.
    32. 32)
      • 28. Van der Ouderaa, E., Schoukens, J., Renneboog, J.: ‘Peak factor minimization of input and output signals of linear systems’, IEEE Trans. Instrum. Meas., 1988, 37, (2), pp. 207212.
    33. 33)
      • 22. Guillaume, P., Schoukens, J., Pintelon, R., et al: ‘Crest-factor minimization using nonlinear Chebyshev approximation methods’, IEEE Trans. Instrum. Meas., 1991, 40, (6), pp. 982989.
    34. 34)
      • 20. Newman, D.J.: ‘An L1 extremal problem for polynomials’, Proc. Am. Math. Soc., 1965, 16, (6), pp. 12871290.
    35. 35)
      • 6. Sanchez, B., Louarroudi, E., Jorge, E., et al: ‘A new measuring and identification approach for time-varying bioimpedance using multisine electrical impedance spectroscopy’, Physiol. Meas., 2013, 34, (3), pp. 339357.
    36. 36)
      • 25. Land, R., Cahill, B. P., Parve, T., et al: ‘Improvements in design of spectra of multisine and binary excitation signals for multi-frequency bioimpedance measurement’. 2011 Annual Int. Conf. IEEE Engineering in Medicine and Biology Society (EMBC), 2011.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2017.0239
Loading

Related content

content/journals/10.1049/iet-smt.2017.0239
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address