http://iet.metastore.ingenta.com
1887

High-impedance fault detection in electrical power distribution systems using moving sum approach

High-impedance fault detection in electrical power distribution systems using moving sum approach

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Science, Measurement & Technology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

High-impedance faults (HIFs) in electrical power distribution systems produce a very random, non-linear and low-magnitude fault current. The conventional overcurrent (OC) relaying-based distribution system protection schemes find difficulty in detecting such low-current HIFs. In this study, a simple two criteria-based protection scheme is proposed for detection and isolation of HIFs in multi-feeder radial distribution systems. It utilises one-cycle sum of superimposed components of residual voltage for HIF detection and the maximum value of one-cycle sum of superimposed components of negative-sequence current for faulted feeder identification. The performance of the proposed scheme is evaluated for a wide variety of possible test cases by generating data through power systems computer-aided design/electro-magnetic transient design and control software. Results clearly show that the proposed scheme can assist conventional OC relay for detection and isolation of HIFs in distribution systems with any grounding connections in a more reliable and faster way.

References

    1. 1)
      • 1. Tengdin, J., Westfall, R., Stephan, K.: ‘High impedance fault detection technology’. Power System Relaying Committee, Piscataway, NJ, USA, 1996, Rep. PSRC Working Group D15.
    2. 2)
      • 2. Wester, C.G.: ‘High impedance fault detection on distribution feeders’. GE Power Management, GER-3993.
    3. 3)
      • 3. Ghaderi, A., Mohammadpour, H., Ginn, H.,, et al: ‘High-impedance fault detection in the distribution network using the time-frequency-based algorithm’, IEEE Trans. Power Deliv., 2015, 30, (3), pp. 12601268.
    4. 4)
      • 4. Russell, B., Chichali, R., Kim, C.: ‘Behaviour of low frequency spectra during arcing fault and switching events’, IEEE Trans. Power Deliv., 1988, 3, (4), pp. 14851492.
    5. 5)
      • 5. Jeerings, D.I., Linders, J.R.: ‘Unique aspects of distribution system harmonics due to high impedance ground faults’, IEEE Trans. Power Deliv., 1990, 5, (2), pp. 10861094.
    6. 6)
      • 6. Jeerings, D.I., Linders, J.R.: ‘A practical protective relay for down-conductor faults’, IEEE Trans. Power Deliv., 1991, 6, (2), pp. 565574.
    7. 7)
      • 7. Jeeringes, D., Linders, J.: ‘Unique aspects of distribution system harmonics due to high impedance ground faults’, IEEE Trans. Power Deliv., 1990, 5, (2), pp. 10861094.
    8. 8)
      • 8. Russell, B., Benner, C.: ‘Arcing fault detection for distribution feeders: security assessment in long term field trials’, IEEE Trans. Power Deliv., 1995, 10, (2), pp. 676683.
    9. 9)
      • 9. Yu, D.C., Khan, S.H.: ‘An adaptive high and low impedance fault detection method’, IEEE Trans. Power Deliv., 1994, 9, (4), pp. 18121821.
    10. 10)
      • 10. Macedo, J.R., Resende, J.W., Bissochi, C.A.,, et al: ‘Proposition of an interharmonic-based methodology for high-impedance fault detection in distribution systems’, IET Gener. Trans. Distrib., 2015, 9, (16), pp. 22932601.
    11. 11)
      • 11. Torres, V., Guardado, J.L., Ruiz, H.F.,, et al: ‘Modeling and detection of high impedance faults’, Electr. Power Syst. Res., 2014, 61, pp. 163172.
    12. 12)
      • 12. Lien, K., Chen, S., Liao, C.,, et al: ‘Energy variance criterion and threshold tuning scheme for high impedance fault detection’, IEEE Trans. Power Deliv., 1999, 14, (3), pp. 810817.
    13. 13)
      • 13. Zamora, I., Majon, A.J., Sagastabeitia, K.J.,, et al: ‘New method for detecting low current faults in electrical distribution systems’, IEEE Trans. Power Deliv., 2007, 22, (4), pp. 20722079.
    14. 14)
      • 14. Benner, C., Carswell, P., Russell, B.D.: ‘Improved algorithm for detecting arcing faults using random fault behaviour’, Electr. Power Syst. Res., 1989, 17, (1), pp. 4956.
    15. 15)
      • 15. Samantaray, S.R., Dash, P.K.: ‘High impedance fault detection in distribution feeders using extended Kalman filter and support vector machine’, Eur. Trans. Electr. Power, 2010, 20, (3), pp. 382393.
    16. 16)
      • 16. Milioudis, A.N., Andreou, G.T., Labridis, D.P.: ‘Enhanced protection scheme for smart grids using power line communications techniques – part I: detection of high impedance fault occurrence’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 16211630.
    17. 17)
      • 17. Milioudis, A.N., Andreou, G.T., Labridis, D.P.: ‘Enhanced protection scheme for smart grids using power line communications techniques – part II: location of high impedance fault position’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 16311640.
    18. 18)
      • 18. Milioudis, A.N., Andreou, G.T., Labridis, D.P.: ‘Detection and location of high impedance faults in multiconductor overhead distribution lines using power line communication devices’, IEEE Trans. Smart Grid, 2015, 6, (2), pp. 894902.
    19. 19)
      • 19. Elkalashy, N.I., Lehtonen, M., Darwish, H.A.,, et al: ‘DWT-based detection and transient power direction-based location of high-impedance faults due to leaning trees in unearthed MV networks’, IEEE Trans. Power Deliv., 2008, 23, (1), pp. 94101.
    20. 20)
      • 20. Moravej, Z., Mortazavi, S.H., Shahrtash, S.M.: ‘DT-CWT based event feature extraction for high impedance faults detection in distribution system’, Int. Trans. Electr. Energy Syst., 2015, 25, pp. 32883303.
    21. 21)
      • 21. Li, K.K., Chan, W.L.: ‘Novel methods for high impedance grounding fault protection in low voltage supply systems’, Electr. Power Compon. Syst., 2003, 31, (12), pp. 11331150.
    22. 22)
      • 22. Eissa, M.M., Sowilam, G.M., Sharaf, A.M.: ‘A new protection detection technique for high impedance fault using neural network’. IEEE Large Engineering Systems Conf. Power Engineering, Halifax, NS, Canada, 2006.
    23. 23)
      • 23. Zadeh, H.K.: ‘ANN-based high impedance fault detection scheme: design and implementation’, Int. J. Emerging Electr. Power Syst., 2005, 4, (2), pp. 114.
    24. 24)
      • 24. Samantaray, S.R., Panigrahi, B.K., Dash, P.K.: ‘High impedance fault detection in power distribution networks using time–frequency transform and probabilistic neural network’, IET Gener. Transm. Distrib., 2008, 2, (2), pp. 261270.
    25. 25)
      • 25. Michalik, M., Lukowicz, M., Rebizant, W.,, et al: ‘New ANN-based algorithms for detecting HIFs in multigrounded MV networks’, IEEE Trans. Power Deliv., 2008, 23, (1), pp. 5866.
    26. 26)
      • 26. Sheng, Y., Rovnyak, S.: ‘Decision tree-based methodology for high impedance fault detection’, IEEE Trans. Power Deliv., 2004, 19, (2), pp. 533536.
    27. 27)
      • 27. Etemadi, A.H., Sanaye-Pasand, M.: ‘High-impedance fault detection using multi-resolution signal decomposition and adaptive neural fuzzy inference system’, IET Gener. Transm. Distrib., 2008, 2, (1), pp. 110118.
    28. 28)
      • 28. Sarlak, M., Shahrtash, S.M.: ‘High-impedance fault branch identification using magnetic field signature analysis’, IEEE Trans. Power Deliv., 2013, 28, (1), pp. 6774.
    29. 29)
      • 29. Zanjani, M.G.M., Kargar, H.K.: ‘High impedance fault detection of distribution network by phasor measurement units’. IEEE Conf. Electr. Power Distribution Networks (EPDC), Tehran, Iran, 2012.
    30. 30)
      • 30. Zanjani, M.G.M., Karegar, H.K., Niaki, H.A.: ‘Application of PMUs for high impedance fault detection of distribution network by considering effect of transformer vector group’. IEEE Conf. Electrical Power Distribution Networks (EPDC), Kermanshah, 2013.
    31. 31)
      • 31. Ghaderi, A., Ginn, H.L.III, Mohammadpour, H.A.: ‘High impedance fault detection: a review’, Electr. Power Syst. Res., 2017, 143, pp. 376388.
    32. 32)
      • 32. Jenkins, N., Allen, R., Crossley, P.,, et al: ‘Embedded generation’, Series 31 (IEE Power & Energy, London, 2000, 2nd edn.).
    33. 33)
      • 33. Gautam, S., Brahma, S.: ‘Detection of high impedance faults in power distribution systems using mathematical morphology’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 12261234.
    34. 34)
      • 34. Costa, F.B., Souza, B.A., Brito, N.S.D.,, et al: ‘Real-time detection of transients induced by high-impedance faults based on the boundary wavelet transform’, IEEE Trans. Ind. Appl., 2015, 51, (6), pp. 53125323.
    35. 35)
      • 35. Elkalashy, N., Lehtonen, M., Darwish, H.A.,, et al: ‘Modeling and experimental verification of high impedance arcing fault in medium voltage networks’, IEEE Trans. Dielectr. Electr. Insul., 2007, 14, (2), pp. 375383.
    36. 36)
      • 36. Nam, S.R., Park, J.K., Kang, Y.C.,, et al: ‘A modelling method of a high impedance fault in a distribution system using two series time-varying resistances in EMTP’. IEEE Conf. Power Engineering Society Summer Meeting, Vancouver, BC, Canada, 2001.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2017.0231
Loading

Related content

content/journals/10.1049/iet-smt.2017.0231
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address