access icon free Rapid multi-objective design optimisation of switched reluctance motors exploiting magnetic flux tubes

The magnetic design of switched reluctance (SR) motors is inherently a hierarchical process. The design cycle progresses through distinct stages where the accuracy improves but computing times increase greatly, thus it often becomes impractical to furnish extensive multi-objective optimisation required to accomplish the optimal design. In order to enable rapid and accurate optimisation of SR motors, an improved reduced-order computational method of flux tubes is implemented to complement and practically replace the time-consuming 2D finite-element-based magnetic analysis. This study demonstrates how the use of the improved flux tubes approach to evaluate objective functions results in substantially faster while still accurate multi-objective optimisation of SR motors.

Inspec keywords: reluctance motors; magnetic flux; magnetic devices; optimisation

Other keywords: improved reduced-order computational method; time-consuming 2D finite-element-based magnetic analysis; SR motor; magnetic flux tube design; switched reluctance motor; rapid multiobjective design optimisation

Subjects: Magnetic material applications and devices; Optimisation techniques; Synchronous machines

References

    1. 1)
      • 10. Miller, T.J.E.: ‘Nonlinear theory of the switched reluctance motor for rapid computer-aided design’, IEE Proc., 1990, 137, (6), pp. 337347.
    2. 2)
      • 14. Stuikys, A., Rotaru, M., Sykulski, J.K.: ‘A refined approach exploiting tubes of flux for analysis of linear switched reluctance motor’, Int. J. Appl. Electromagn. Mech., 2016, 51, pp. S13S21.
    3. 3)
      • 20. Sykulski, J.K.: ‘Dual field modeling using tubes and slices’, Adv. Eng. Softw., 1995, 21, pp. 2126.
    4. 4)
      • 22. GNU Octave. Available at https://www.gnu.org/software/octave/, accessed 10 April 2017.
    5. 5)
      • 5. Schofield, N., Long, S.A., Howe, D., et al: ‘Design of a switched reluctance machine for extended speed operation’, IEEE Trans. Ind. Appl., 2009, 45, (1), pp. 116122.
    6. 6)
      • 13. Choi, Y.K., Yoon, H.S., Koh, C.S.: ‘Pole-shape optimization of a switched-reluctance motor for torque ripple reduction’, IEEE Trans. Magn., 2007, 43, (4), pp. 17971800.
    7. 7)
      • 15. Stuikys, A., Sykulski, J.K.: ‘An efficient design optimization framework for nonlinear switched reluctance machines’, IEEE Trans. Ind. Appl., 2017, 53, (3), pp. 19851993.
    8. 8)
      • 4. Takeno, M., Chiba, A, Hoshi, N., et al: ‘Test results and torque improvement of the 50-kW switched reluctance motor designed for hybrid electric vehicle’, IEEE Trans. Ind. Appl., 2012, 48, pp. 13271334.
    9. 9)
      • 18. Deshpande, U.S., Cathey, J.J., Richter, E.: ‘High-force density linear switched reluctance machine’, IEEE Trans. Ind. Appl., 1995, 31, (2), pp. 345352.
    10. 10)
      • 3. Krishnan, R.: ‘Switched reluctance motor drives: modeling, simulation, analysis, design, and applications’ (CRC Press LLC, Boca Raton, FL, 2001).
    11. 11)
      • 12. Ma, C., Qu, L.: ‘Multiobjective optimization of switched reluctance motors based on design of experiments and particle swarm optimization’, Paper 294, DigitalCommons@University of Nebraska – Lincoln, 2015.
    12. 12)
      • 17. Byeong-Seok, L.: ‘Linear switched reluctance machine drives with electromagnetic levitation and guidance systems’. Doctoral thesis, Virginia Polytechnic Institute and State University, November, 2000.
    13. 13)
      • 8. Stephenson, J.M., Corda, J.: ‘Computation of torque and current in doubly salient reluctance motors from nonlinear magnetisation data’, IEE Proc., 1979, 126, (5), pp. 393396.
    14. 14)
      • 19. Vaithilingam, C.A., Misron, N., Zare, M.R., et al: ‘Computation of electromagnetic torque in a double rotor switched reluctance motor using flux tube methods’, Energies, 2012, 5, pp. 40084026, doi: 10.3390/en5104008.
    15. 15)
      • 21. Goldberg, D.E.: ‘Genetic algorithms in search, optimization & machine learning’ (Addison-Wesley, Boston, 1989).
    16. 16)
      • 9. Krishnan, R., Arumugam, R., Lindsay, J.F.: ‘Design procedure for switched reluctance motors’, IEEE Trans. Ind. Appl., 1988, 24, (3), pp. 456461.
    17. 17)
      • 6. Widmer, J.D., Martin, R., Kimiabeigi, M.: ‘Electric vehicle traction motors without rare earth magnets’, Sust. Mater. Technol., 2015, 3, pp. 713.
    18. 18)
      • 16. Roters, H.C.: ‘Electromagnetic devices’ (John Wiley & Sons Inc., New York, 1941).
    19. 19)
      • 11. Balaji, M., Kamaraj, V.: ‘Evolutionary computation based multi-objective pole shape optimization of switched reluctance machine’, Electr. Power Energy Syst., 2012, 43, pp. 6369.
    20. 20)
      • 2. Miller, T.J.E. (Ed.): ‘Electronic control of switched reluctance machines’ (Newnes Power Engineering Series, Newnes, 2001).
    21. 21)
      • 1. Miller, T.J.E.: ‘Switched reluctance motors and their control’ (Oxford University Press, Oxford UK, 1993).
    22. 22)
      • 7. Rahman, K.M., Fahimi, B., Suresh, G., et al: ‘Advantages of switched reluctance motor applications to EV and HEV: design and control issues’, IEEE Trans. Ind. Appl., 2000, 36, (1), pp. 111121.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2017.0213
Loading

Related content

content/journals/10.1049/iet-smt.2017.0213
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading