http://iet.metastore.ingenta.com
1887

Metrological intercomparison of six terrestrial laser scanning systems

Metrological intercomparison of six terrestrial laser scanning systems

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Science, Measurement & Technology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Intercomparison among six terrestrial laser scanner systems focused on the measurement of small elements ( < 0.5 m) is performed. Phase shift (PS) and time of flight (ToF) scanners are considered. Two standard artefacts containing three-dimensional printing spheres and steps of variable height are used for the experiment. Results show errors between −4.5 and 3.5 mm in the measurement of distances between step planes. The most stable systems for measuring small elements seem the Leica C10, Faro Photon and Riegl LMS Z390i. The quality of the results is linked to the overall quality of the system rather than the specific technology used for range measurement (PS or ToF) which does not appear to be a determining factor.

References

    1. 1)
      • 1. Stone, J.A.: ‘Methods for evaluating the reference value in laboratory intercomparisons of dimensional measurements’. Proc. SPIE, 2005, vol. 5879, pp. 18.
    2. 2)
      • 2. Bangen, S.G., Whaton, J.M., Bouwes, N., et al: ‘A methodological intercomparisons of topographic survey techniques for characterizing waldeable streams’, Geomorphology, 2014, 206, pp. 343361.
    3. 3)
      • 3. Park, H.S., Lee, H.M., Adeli, H., et al: ‘A new approach for health monitoring of structures: terrestrial laser scanning’, Comput. Aided Civ. Inf., 2007, 22, (1), pp. 1930.
    4. 4)
      • 4. Tang, P., Huber, D., Akinci, B., et al: ‘Automatic reconstruction of as built building information models from laser scanned point clouds: a review of related techniques’, Autom. Constr., 2010, 19, (7), pp. 829843.
    5. 5)
      • 5. Lai, P., Samson, C.: ‘Applications of mesh parameterization and deformation for unwrapping 3D images of rock tunnels’, Tunn. Underground Space Technol., 2016, 58, (1), pp. 109119.
    6. 6)
      • 6. Zhang, W., Chen, Y, Wang, H., et al: ‘Efficient registration of terrestrial LiDAR scans using a coarse to fine strategy for forestry applications’, Agric. Forest Meteorol., 2016, 225, pp. 823.
    7. 7)
      • 7. Georgopoulys, G.D., Telioni, E.C., Tsotzu, A.: ‘The contribution of laser scanning technology in the estimation of ancient Greek monuments’, Surv. Rev., 2016, 48, (349), pp. 303308.
    8. 8)
      • 8. Abellán, A., Jaboyedoff, M., Oppikofer, T., et al: ‘Detection of millimetric deformation using a terrestrial laser scanner: experiment and application to a rockfall event’, Nat. Harards Earth Syst. Sci., 2009, 9, pp. 365372.
    9. 9)
      • 9. González-Jorge, H., Riveiro, B., Armesto, J., et al: ‘Standard artifact for the geometric verification of terrestrial laser scanning systems’, Opt. Laser Technol., 2011, 43, pp. 12491256.
    10. 10)
      • 10. Bueno, M., González-Jorge, H., Martínez-Sánchez, J., et al: ‘Evaluation of point cloud registration using Monte Carlo method’, Measurement, 2016, 92, pp. 264270.
    11. 11)
      • 11. Lichti, D.D., Stewart, M.P., Tsakiri, M., et al: ‘Benchmark tests on a three dimensional laser scanning system’, Geomatics Res. Australas., 2000, 72, pp. 123.
    12. 12)
      • 12. Lichti, D.D.: ‘Terrestrial laser scanner self-calibration: correlation sources and their mitigation’, ISPRS J. Photogramm., 2010, 65, pp. 93102.
    13. 13)
      • 13. González-Aguilera, D., Rodríguez-Gonzálvez, P., Armesto, J., et al: ‘Trimble GX200 and Riegl LMS-Z390i sensor self-calibration’, Opt. Express, 2011, 19, (3), pp. 26762693.
    14. 14)
      • 14. Amiri Parian, J., Grün, A.: ‘Integrated laser scanner and intensity image calibration and accuracy assessment’, Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., 2005, XXXVI, (3), pp. 1823.
    15. 15)
      • 15. Lichti, D.D., Jamtsho, S.: ‘Angular resolution of terrestrial laser scanners’, Photogramm. Rec., 2006, 21, (114), pp. 141160.
    16. 16)
      • 16. Boehler, W., Bordas Vincent, M., Marbs, A.: ‘Investigating laser scanner accuracy’, Int. Arch. Photogramm., Remote Sens. Spat. Inf. Sci., 2003, XXXIV, (5), pp. 696701.
    17. 17)
      • 17. Gordon, S., Lichti, D.D., Stewart, M., et al: ‘Metric performance of a high-resolution laser scanner’, Proc. SPIE, 2001, 4309, pp. 174184.
    18. 18)
      • 18. Soudarissanane, S., Lindenbergh, R., Menenti, M., et al: ‘Scanning geometry: influencing factor on the quality of terrestrial laser scanning points’, ISPRS J: Photogramm. Remote Sens., 2011, 66, (4), pp. 389399.
    19. 19)
      • 19. Mechelke, K., Kersten, T.P., Lindstaedt, M.: ‘Comparative investigations into the accuracy behavior of the new generation of terrestrial laser scanning systems’. Proc. Conf. Optical 3D Measurement Techniques, 2007, pp. 319327.
    20. 20)
      • 20. González-Jorge, H., Rodríguez-Gonzalvez, P., González-Aguilera, D., et al: ‘Metrological comparison of terrestrial laser scanning systems Riegl LMS Z390i and trimble GX’, Opt. Eng., 2011, 50, (11), pp. 116101, doi:10.1117/1.3646395.
    21. 21)
      • 21. Puente, I., González-Jorge, H., Riveiro, B., et al: ‘Accuracy verification of the lynx mobile mapper system’, Opt. Laser Technol., 2013, 45, pp. 578586.
    22. 22)
      • 22. González-Jorge, H., Riveiro, B., Vázquez-Fernández, E., et al: ‘Metrological evaluation of Microsoft Kinect and Asus Xtion sensors’, Measurement, 2013, 46, pp. 18001806.
    23. 23)
      • 23. González-Jorge, H., Rodríguez-Gonzálvez, R., Martínez-Sánchez, J., et al: ‘Metrological comparison between Kinect I and Kinect II sensors’, Measurement, 2015, 70, pp. 2126.
    24. 24)
      • 24. Bueno, M., Díaz-Vilariño, L., Martínez-Sánchez, J., et al: ‘Metrological evaluation of KinectFusion and its comparison with Microsoft Kinect sensor’, Measurement, 2015, 73, pp. 137145.
    25. 25)
      • 25. Faro Focus 330X datasheet. Available at http://www.faro.com/products/3d-surveying/laser-scanner-faro-focus-3d/features, accessed May 2017.
    26. 26)
      • 26. Riegl LMS Z390i datasheet. Available at http://www.riegl.com/uploads/tx_pxpriegldownloads/10_DataSheet_Z390i_20-04-2010.pdf, accessed May 2017.
    27. 27)
      • 27. Faro Photon 80 datasheet. Available at http://archive.cyark.org/temp/FAROphoton8020datasheet.pdf, accessed May 2017.
    28. 28)
      • 28. Trimble GX datasheet. Available at https://ismar.eplica.is/media/landmaelingar/3dscanner/022543-148A_GX_3Dscanner_DS_0206_lr.pdf, accessed May 2017.
    29. 29)
      • 29. Faro Focus 3D datasheet. Available at http://www.faro.com/products/3d-surveying/laser-scanner-faro-focus-3d/features, accessed May 2017.
    30. 30)
      • 30. Leica C10 Scanstation datasheet. Available at https://hds.leica-geosystems.com/downloads123/hds/hds/ScanStation%20C10/brochures-datasheet/Leica_ScanStation_C10_DS_en.pdf, accessed May 2017.
    31. 31)
      • 31. BQ Witbox 3D printing machine. Available at https://www.bq.com/es/witbox-2, accessed May 2017.
    32. 32)
      • 32. Hexagon Metrology Absolute Arm. Available at http://www.hexagonmetrology.es/ROMER-Absolute-Arm_791.htm, accessed May 2017.
    33. 33)
      • 33. Cloud Compare Software tool. Available at http://cloudcompare.org/, accessed May 2017.
    34. 34)
      • 34. Kadobayashi, R., Kochi, N., Otani, H., et al: ‘Comparison and evaluation of laser scanning and photogrammetry and their combined use for digital recording of cultural heritage’, Int. Arch. Photogramm., Remote Sens. Spat. Inf. Sci., 2004, XXXV, (5), pp. 401406.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2017.0209
Loading

Related content

content/journals/10.1049/iet-smt.2017.0209
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address