access icon free Metrological intercomparison of six terrestrial laser scanning systems

Intercomparison among six terrestrial laser scanner systems focused on the measurement of small elements ( < 0.5 m) is performed. Phase shift (PS) and time of flight (ToF) scanners are considered. Two standard artefacts containing three-dimensional printing spheres and steps of variable height are used for the experiment. Results show errors between −4.5 and 3.5 mm in the measurement of distances between step planes. The most stable systems for measuring small elements seem the Leica C10, Faro Photon and Riegl LMS Z390i. The quality of the results is linked to the overall quality of the system rather than the specific technology used for range measurement (PS or ToF) which does not appear to be a determining factor.

Inspec keywords: remote sensing by laser beam; optical scanners; three-dimensional printing

Other keywords: three-dimensional printing spheres; metrological intercomparison; phase shift; terrestrial laser scanning systems; time of flight scanners

Subjects: Metrological applications of lasers; Optical shutters, windows, diaphragms, deflectors, choppers, and scanners; Metrological applications of lasers; Geophysical techniques and equipment; Instrumentation and techniques for geophysical, hydrospheric and lower atmosphere research

References

    1. 1)
      • 27. Faro Photon 80 datasheet. Available at http://archive.cyark.org/temp/FAROphoton8020datasheet.pdf, accessed May 2017.
    2. 2)
      • 29. Faro Focus 3D datasheet. Available at http://www.faro.com/products/3d-surveying/laser-scanner-faro-focus-3d/features, accessed May 2017.
    3. 3)
      • 19. Mechelke, K., Kersten, T.P., Lindstaedt, M.: ‘Comparative investigations into the accuracy behavior of the new generation of terrestrial laser scanning systems’. Proc. Conf. Optical 3D Measurement Techniques, 2007, pp. 319327.
    4. 4)
      • 26. Riegl LMS Z390i datasheet. Available at http://www.riegl.com/uploads/tx_pxpriegldownloads/10_DataSheet_Z390i_20-04-2010.pdf, accessed May 2017.
    5. 5)
      • 32. Hexagon Metrology Absolute Arm. Available at http://www.hexagonmetrology.es/ROMER-Absolute-Arm_791.htm, accessed May 2017.
    6. 6)
      • 34. Kadobayashi, R., Kochi, N., Otani, H., et al: ‘Comparison and evaluation of laser scanning and photogrammetry and their combined use for digital recording of cultural heritage’, Int. Arch. Photogramm., Remote Sens. Spat. Inf. Sci., 2004, XXXV, (5), pp. 401406.
    7. 7)
      • 10. Bueno, M., González-Jorge, H., Martínez-Sánchez, J., et al: ‘Evaluation of point cloud registration using Monte Carlo method’, Measurement, 2016, 92, pp. 264270.
    8. 8)
      • 18. Soudarissanane, S., Lindenbergh, R., Menenti, M., et al: ‘Scanning geometry: influencing factor on the quality of terrestrial laser scanning points’, ISPRS J: Photogramm. Remote Sens., 2011, 66, (4), pp. 389399.
    9. 9)
      • 30. Leica C10 Scanstation datasheet. Available at https://hds.leica-geosystems.com/downloads123/hds/hds/ScanStation%20C10/brochures-datasheet/Leica_ScanStation_C10_DS_en.pdf, accessed May 2017.
    10. 10)
      • 31. BQ Witbox 3D printing machine. Available at https://www.bq.com/es/witbox-2, accessed May 2017.
    11. 11)
      • 12. Lichti, D.D.: ‘Terrestrial laser scanner self-calibration: correlation sources and their mitigation’, ISPRS J. Photogramm., 2010, 65, pp. 93102.
    12. 12)
      • 11. Lichti, D.D., Stewart, M.P., Tsakiri, M., et al: ‘Benchmark tests on a three dimensional laser scanning system’, Geomatics Res. Australas., 2000, 72, pp. 123.
    13. 13)
      • 4. Tang, P., Huber, D., Akinci, B., et al: ‘Automatic reconstruction of as built building information models from laser scanned point clouds: a review of related techniques’, Autom. Constr., 2010, 19, (7), pp. 829843.
    14. 14)
      • 2. Bangen, S.G., Whaton, J.M., Bouwes, N., et al: ‘A methodological intercomparisons of topographic survey techniques for characterizing waldeable streams’, Geomorphology, 2014, 206, pp. 343361.
    15. 15)
      • 3. Park, H.S., Lee, H.M., Adeli, H., et al: ‘A new approach for health monitoring of structures: terrestrial laser scanning’, Comput. Aided Civ. Inf., 2007, 22, (1), pp. 1930.
    16. 16)
      • 25. Faro Focus 330X datasheet. Available at http://www.faro.com/products/3d-surveying/laser-scanner-faro-focus-3d/features, accessed May 2017.
    17. 17)
      • 13. González-Aguilera, D., Rodríguez-Gonzálvez, P., Armesto, J., et al: ‘Trimble GX200 and Riegl LMS-Z390i sensor self-calibration’, Opt. Express, 2011, 19, (3), pp. 26762693.
    18. 18)
      • 8. Abellán, A., Jaboyedoff, M., Oppikofer, T., et al: ‘Detection of millimetric deformation using a terrestrial laser scanner: experiment and application to a rockfall event’, Nat. Harards Earth Syst. Sci., 2009, 9, pp. 365372.
    19. 19)
      • 28. Trimble GX datasheet. Available at https://ismar.eplica.is/media/landmaelingar/3dscanner/022543-148A_GX_3Dscanner_DS_0206_lr.pdf, accessed May 2017.
    20. 20)
      • 23. González-Jorge, H., Rodríguez-Gonzálvez, R., Martínez-Sánchez, J., et al: ‘Metrological comparison between Kinect I and Kinect II sensors’, Measurement, 2015, 70, pp. 2126.
    21. 21)
      • 24. Bueno, M., Díaz-Vilariño, L., Martínez-Sánchez, J., et al: ‘Metrological evaluation of KinectFusion and its comparison with Microsoft Kinect sensor’, Measurement, 2015, 73, pp. 137145.
    22. 22)
      • 20. González-Jorge, H., Rodríguez-Gonzalvez, P., González-Aguilera, D., et al: ‘Metrological comparison of terrestrial laser scanning systems Riegl LMS Z390i and trimble GX’, Opt. Eng., 2011, 50, (11), pp. 116101, doi:10.1117/1.3646395.
    23. 23)
      • 5. Lai, P., Samson, C.: ‘Applications of mesh parameterization and deformation for unwrapping 3D images of rock tunnels’, Tunn. Underground Space Technol., 2016, 58, (1), pp. 109119.
    24. 24)
      • 15. Lichti, D.D., Jamtsho, S.: ‘Angular resolution of terrestrial laser scanners’, Photogramm. Rec., 2006, 21, (114), pp. 141160.
    25. 25)
      • 22. González-Jorge, H., Riveiro, B., Vázquez-Fernández, E., et al: ‘Metrological evaluation of Microsoft Kinect and Asus Xtion sensors’, Measurement, 2013, 46, pp. 18001806.
    26. 26)
      • 33. Cloud Compare Software tool. Available at http://cloudcompare.org/, accessed May 2017.
    27. 27)
      • 1. Stone, J.A.: ‘Methods for evaluating the reference value in laboratory intercomparisons of dimensional measurements’. Proc. SPIE, 2005, vol. 5879, pp. 18.
    28. 28)
      • 17. Gordon, S., Lichti, D.D., Stewart, M., et al: ‘Metric performance of a high-resolution laser scanner’, Proc. SPIE, 2001, 4309, pp. 174184.
    29. 29)
      • 14. Amiri Parian, J., Grün, A.: ‘Integrated laser scanner and intensity image calibration and accuracy assessment’, Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., 2005, XXXVI, (3), pp. 1823.
    30. 30)
      • 21. Puente, I., González-Jorge, H., Riveiro, B., et al: ‘Accuracy verification of the lynx mobile mapper system’, Opt. Laser Technol., 2013, 45, pp. 578586.
    31. 31)
      • 6. Zhang, W., Chen, Y, Wang, H., et al: ‘Efficient registration of terrestrial LiDAR scans using a coarse to fine strategy for forestry applications’, Agric. Forest Meteorol., 2016, 225, pp. 823.
    32. 32)
      • 9. González-Jorge, H., Riveiro, B., Armesto, J., et al: ‘Standard artifact for the geometric verification of terrestrial laser scanning systems’, Opt. Laser Technol., 2011, 43, pp. 12491256.
    33. 33)
      • 7. Georgopoulys, G.D., Telioni, E.C., Tsotzu, A.: ‘The contribution of laser scanning technology in the estimation of ancient Greek monuments’, Surv. Rev., 2016, 48, (349), pp. 303308.
    34. 34)
      • 16. Boehler, W., Bordas Vincent, M., Marbs, A.: ‘Investigating laser scanner accuracy’, Int. Arch. Photogramm., Remote Sens. Spat. Inf. Sci., 2003, XXXIV, (5), pp. 696701.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2017.0209
Loading

Related content

content/journals/10.1049/iet-smt.2017.0209
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading