access icon free Numerical calculation of CHTC on end metal parts and flow in end region of a turbogenerator

The convection heat transfer coefficient (CHTC) distribution of surfaces of end metal parts directly affects the temperature distribution of end metal parts. In this study, a large turbogenerator is analysed. To study the CHTC distribution of surfaces of end metal parts in detail, a three-dimensional (3D) fluid and thermal analysis model of whole turbogenerator end region is established. The losses of end metal parts from 3D transient electromagnetic field calculation are provided to end metal parts as heat sources. Pressure values of end-region outlets and fluid velocity of fan outlet from flow network calculation are provided to end region as boundary conditions in the 3D fluid and thermal analysis model. CHTC distribution laws of the surfaces of the clamping plate, finger plate, and copper screen are studied in detail by the finite volume method. The fluid flow and temperature distribution of end metal parts are determined in the end region of the turbogenerator. The calculated results are compared with measured data.

Inspec keywords: convection; turbogenerators; computational fluid dynamics; temperature distribution

Other keywords: CHTC; thermal analysis model; convection heat transfer coefficient distribution; 3D fluid analysis model; temperature distribution; three dimensional fluid; end metal parts; turbogenerator end region; 3D transient electromagnetic field calculation

Subjects: General fluid dynamics theory, simulation and other computational methods; Applied fluid mechanics; a.c. machines; Power and plant engineering (mechanical engineering); Fluid mechanics and aerodynamics (mechanical engineering); Convection and heat transfer; Heat and thermodynamic processes (mechanical engineering)

References

    1. 1)
      • 3. Ide, K., Hattori, K., Takahashi, K., et al: ‘A sophisticated maximum capacity analysis for large turbine generators considering limitation of temperature’, IEEE Trans. Energy Convers., 2005, 20, (1), pp. 166172.
    2. 2)
      • 8. Šašić, M., Lloyd, B., Elez, A.: ‘Finite element analysis of turbine generator rotor winding shorted turns’, IEEE Trans. Energy Convers., 2012, 27, (4), pp. 930937.
    3. 3)
      • 16. Arbab, N., Wang, W., Lin, C., et al: ‘Thermal modeling and analysis of a double-stator switched reluctance motor’, IEEE Trans. Energy Convers., 2015, 30, (3), pp. 12091217.
    4. 4)
      • 10. Biro, O., Preis, K., Richter, K.R.: ‘Various FEM formulations for the calculation of transient 3-D eddy currents in nonlinear media’, IEEE Trans. Magn., 1995, 31, (3), pp. 13071312.
    5. 5)
      • 12. Gorginpour, H., Oraee, H., McMahon, R.A.: ‘Electromagnetic-thermal design optimization of the brushless doubly fed induction generator’, IEEE Trans. Ind. Electron., 2014, 61, (4), pp. 17101721.
    6. 6)
      • 17. Camilleri, R., Howey, D.A., McCulloch, M.D.: ‘Predicting the temperature and flow distribution in a direct oil-cooled electrical machine with segmented stator’, IEEE Trans. Ind. Electron., 2016, 63, (1), pp. 8291.
    7. 7)
      • 6. Fujita, M., Ueda, T., Tokumasu, T., et al: ‘Eddy current analysis in the stator end structures of large capacity turbine generators’. Proc. Int. Conf. Electrical Machines and Systems, 2009, pp. 16.
    8. 8)
      • 9. Shiyuan, C.: ‘Network analyses of ventilation system for large hydrogenerator’. proc. Fifth Int. Conf. Electrical Machines and Systems (ICEMS), 2001, vol. 1), pp. 137140.
    9. 9)
      • 14. Boglietti, A., Carpaneto, E., Cossale, M., et al: ‘Stator-winding thermal models for short-time thermal transients: definition and validation’, IEEE Trans. Ind. Electron., 2016, 63, (5), pp. 27132721.
    10. 10)
      • 18. Polikarpova, M., Lindh, P., Gerada, C., et al: ‘Thermal effects of stator potting in an axial-flux permanent magnet synchronous generator’, Appl. Therm. Eng., 2015, 75, (22), pp. 421429.
    11. 11)
      • 5. Ban, D., Zarko, D., Mandic, I.: ‘Turbogenerator end-winding leakage inductance calculation using a 3-D analytical approach based on the solution of Neumann integrals’, IEEE Trans. Energy Convers., 2005, 20, (1), pp. 98105.
    12. 12)
      • 4. Stancheva, R.D., Iatcheva, I.I.: ‘3-D electromagnetic force distribution in the end region of turbogenerator’, IEEE Trans. Magn., 2009, 45, (3), pp. 10001003.
    13. 13)
      • 1. Albanese, R., Calvano, F., Mut, G.D., et al: ‘Coupled three dimensional numerical calculation of forces and stresses on the end windings of large turbo generators via integral formulation’, IEEE Trans. Magn., 2012, 48, (2), pp. 875878.
    14. 14)
      • 15. Nategh, S., Huang, Z., Krings, A., et al: ‘Thermal modeling of directly cooled electric machines using lumped parameter and limited CFD analysis’, IEEE Trans. Energy Convers., 2013, 28, (4), pp. 979990.
    15. 15)
      • 13. Li, H., Shen, Y.: ‘Thermal analysis of the permanent-magnet spherical motor’, IEEE Trans. Energy Convers., 2015, 30, (3), pp. 991998.
    16. 16)
      • 11. Kefalas, T.D., Kladas, A.G.: ‘Thermal investigation of permanent-magnet synchronous motor for aerospace applications’, IEEE Trans. Ind. Electron., 2014, 61, (8), pp. 44044411.
    17. 17)
      • 7. Wu, Y., Li, Y.: ‘Diagnosis of rotor winding interturn short-circuit in turbine generators using virtual power’, IEEE Trans. Energy Convers., 2015, 30, (1), pp. 183188.
    18. 18)
      • 2. Yamazaki, K., Tada, S., Mogi, H., et al: ‘Eddy current analysis considering lamination for stator core ends of turbine generators’, IEEE Trans. Magn., 2008, 44, (6), pp. 15021505.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2017.0142
Loading

Related content

content/journals/10.1049/iet-smt.2017.0142
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading