Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Fractal-based lightning model for shielding failure rate calculation of transmission lines

In this study, performance of lightning shielding system of transmission lines is investigated by means of a new fractal-based model of simulated lightning. A new lightning downward stepped leader based on fractal approach is introduced in this study. The zigzag movement of lightning downward leader as well as branching nature are simulated using the proposed model. Moreover, a new charge distribution is proposed for branched lightning channel. In addition, the branch fading during lightning downward movement is also simulated in order to simulate the lightning closer to reality. The proposed method is applied for calculating the striking distance for a transmission line and the results are compared with those of leader progression model and different models of electrogeometric model. Furthermore, the shielding failure rate of some practical structures obtained by the proposed method is compared with the field observations. The results are discussed and superiority of the proposed simulated lightning model is concluded.

References

    1. 1)
      • 11. Dong, L., He, J., Zeng, R.: ‘A statistical view for fractal simulation of lightning’. Proc. 2010 Asia-Pacific Int. Symp. Electromagnetic Compatibility, Beijing, China, 12–16 April 2010, pp. 12271230.
    2. 2)
      • 19. Li, J., Yang, Q., Sima, W., et al: ‘A new estimation model of the lightning shielding performance of transmission lines using a fractal approach’, IEEE Trans. Dielectr. Electr. Insul., 2011, 8, pp. 17121723.
    3. 3)
      • 14. Femia, N., Niemeyer, L., Tucci, V.: ‘Fractal characteristics of electrical discharges: experiments and simulation’, J. Phys. D, Appl. Phys., 1993, 26, pp. 619627.
    4. 4)
      • 9. Eriksson, A.J.: ‘An improved electrogeometric model for transmission line shielding analysis’, IEEE Trans. Power Deliv., 1987, 2, pp. 871886.
    5. 5)
      • 29. Whitehead, E.R.: ‘CIGRE survey of the lightning performance of EHV transmission lines’, Electra, 1974, 33, pp. 6389.
    6. 6)
      • 7. Mousa, A.M., Srivastava, K.D.: ‘Effect of shielding by trees on the frequency of lightning strokes to power lines’, IEEE Trans. Power Deliv., 1988, 3, pp. 724732.
    7. 7)
      • 5. Young, F.S., Clayton, J.M., Hileman, A.R.: ‘Shielding of transmission lines’, IEEE Trans. Power Appar. Syst., 1963, S82, pp. 132154.
    8. 8)
      • 26. Becerra, M., Cooray, V.: ‘A simplified physical model to determine the lightning upward connecting leader inception’, IEEE Trans. Power Deliv., 2006, 21, pp. 897908.
    9. 9)
      • 17. Barclay, A.L., Sweeney, P.J., Dissado, L.A., et al: ‘Stochastic modeling of electrical treeing: fractal and statistical characteristics’, J. Phys. D, Appl. Phys., 1990, 23, pp. 15361545.
    10. 10)
      • 28. Mikropoulos, P.N, Tsovilis, T.E.: ‘Lightning attachment models and maximum shielding failure current of overhead transmission lines: implications in insulation coordination of substations’, IET Gener. Transm. Distrib., 2010, 4, pp. 12991313.
    11. 11)
      • 27. Kawasaki, Z., Matsuura, Z.: ‘Does a lightning channel show a fractal?’, Appl. Energy, 2000, 67, pp. 147158.
    12. 12)
      • 6. Brown, G.W., Whitehead, E.R.: ‘Field and analytical studies of transmission line shielding: part II’, IEEE Trans. Power Appar. Syst., 1969, PAS-88, pp. 617626.
    13. 13)
      • 31. IEEE Working Group.: ‘A simplified method for estimating the lightning performance of transmission lines’, IEEE Trans. Power Appar. Syst., 1985, PAS-104, (4), pp. 919932.
    14. 14)
      • 15. Pietronero, L., Wiesmann, H.J.: ‘Stochastic model for dielectric breakdown’, J. Stat. Phys., 1984, 36, pp. 909916.
    15. 15)
      • 32. CIGRE Working Group 33.01: ‘Guide to procedure for estimating the lightning performance of transmission lines’, Technical Brochure no. 63, October 1991.
    16. 16)
      • 23. Cooray, V.: ‘The mechanism of the lightning flash, in the lightning flash’ (Institution of Electrical Engineers, London, UK, 2003), pp. 144159.
    17. 17)
      • 12. Hileman, A.R.: ‘Insulation coordination for power systems’, (Marcel Dekker, Inc., New York, NY, 1999), pp. 241274.
    18. 18)
      • 3. Taniguchi, S., Tsuboi, T., Okabe, S.: ‘Observation results of lightning shielding for large-scale transmission lines’, IEEE Trans. Dielectr. Electr. Insul., 2009, 16, (2), pp. 552559.
    19. 19)
      • 33. Eriksson, A.J.: ‘The incidence of lightning strikes to power lines’, IEEE Trans. Power Deliv., 1987, PWDR-2, pp. 859870.
    20. 20)
      • 10. Tavakoli, M.R.B., Vahidi, B.: ‘Transmission-lines shielding failure-rate calculation by means of 3-D leader progression models’, IEEE Trans. Power Deliv., 2011, 26, pp. 507516.
    21. 21)
      • 21. Shi, W., Li, Q., Zhang, L.: ‘A stepped leader model for lightning including charge distribution in branched channels’, J. Appl. Phys., 2014, 116, pp. 17.
    22. 22)
      • 2. He, J.L., Wang, X., Yu, Z.Q., et al: ‘Statistical analysis on lightning performance of transmission lines in several regions of China’, IEEE Trans. Power Deliv., 2015, 30, (3), pp. 15431551.
    23. 23)
      • 1. Bakar, H.A., Tan, C.K., Abidin, A.Z., et al: ‘Comparative study on substation shielding due to direct lightning strokes’, J. Power Energy Eng., 2014, 2, pp. 600611.
    24. 24)
      • 16. Wiesmann, H.J., Zeller, H.R.: ‘A fractal model of dielectric breakdown and prebreakdown in solid dielectrics’, J. Appl. Phys., 1986, 60, pp. 17701773.
    25. 25)
      • 30. Rahiminejad, A., Vahidi, B.: ‘LPM-based shielding performance analysis of high-voltage substations against direct lightning strokes’, IEEE Trans. Power Deliv., 2017, 32, (5), pp. 221827.
    26. 26)
      • 25. Berger, K.: ‘Novel observations on lightning discharges: results of research on mount San Salvatore’, J. Franklin Inst., 1967, 283, pp. 478525.
    27. 27)
      • 22. Mandelbrot, B.B.: ‘The fractal geometry of nature’ (W.H. Freeman and Co., San Francisco, USA, 1982, 1st edn.).
    28. 28)
      • 20. Cooray, V., Rakov, V., Theethayi, N.: ‘The lightning striking distance – revisited’, J. Electrostat., 2007, 67, pp. 296306.
    29. 29)
      • 4. Wagner, C.F., McCann, G.D., Lear, C.M.: ‘Shielding of substations’, Trans. AIEE, 1942, 61, pp. 96100.
    30. 30)
      • 8. IEEE Guide for Improving the Lightning Performance of Transmission Lines’, IEEE Std. 1243, 1997.
    31. 31)
      • 13. Petrov, N.I., Petrova, G.N., Alessandro, F.D.: ‘Quantification of the probability of lightning strikes to structures using a fractal approach’, IEEE Trans. Dielectr. Electr. Insul., 2003, 10, pp. 641654.
    32. 32)
      • 24. Petrov, N.I., Waters, R.T.: ‘Determination of the striking distance of lightning to earthed structures’, Proc. R. Soc. Lond. A, 1995, 450, pp. 589601.
    33. 33)
      • 18. Tsonis, A.A., Elsner, J.B.: ‘Fractal characterization and simulation of lightning’, Beitr. Phys. Atmos. (Contrib. Atmos. Phys.), 1987, 60, pp. 187192.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2016.0542
Loading

Related content

content/journals/10.1049/iet-smt.2016.0542
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address