access icon free Improved FRZPC for the two-dimensional resistive sensor array

With M sampling operational amplifiers (op-amps) in negative feedback, the fast readout zero potential circuit (FRZPC) can simultaneously access M elements in the M × N resistive sensor array with the shared row–column fashion but it suffered from the crosstalk problem caused by the switch-on resistance of the column multiplexers, the non-scanned elements and the size of the array. For suppressing the crosstalk problem, the authors proposed an improved FRZPC, called IFRZPC, by introducing one more op-amp in negative feedback to sample the current in the ground to the array direction. Then, in the FRZPC and the IFRZPC, the effects of different parameters of the resistive sensor array and the readout circuit on the measurement accuracy of the elements being tested were simulated using National Instrument Multisim. Simulations and comparative experiments were performed and demonstrated that IFRZPC, though requiring M + 1 op-amps, M + 1 resistors, and M + 1 sampling channels, could simultaneously access M elements being tested on the same column in the M × N resistive sensor array with a better accuracy.

Inspec keywords: feedback amplifiers; crosstalk; readout electronics; resistors; sensor arrays; operational amplifiers; multiplexing equipment

Other keywords: sampling channel; IFRZPC; negative feedback; M sampling operational amplifier; two-dimensional resistive sensor array; National Instrument Multisim; column multiplexer; improved fast readout zero potential circuit; shared row-column fashion; op-amp; resistor; switch-on resistance; crosstalk problem; nonscanned element

Subjects: Amplifiers; Sensing devices and transducers; Resistors

References

    1. 1)
      • 14. Takei, K., Takahashi, T., Ho, J.C., et al: ‘Nanowire active-matrix circuitry for low-voltage macroscale artificial skin’, Nat. Mater., 2010, 9, (10), pp. 821826.
    2. 2)
      • 15. Wang, C., Hwang, D., Yu, Z., et al: ‘User-interactive electronic skin for instantaneous pressure visualization’, Nat. Mater., 2013, 12, (10), pp. 899904.
    3. 3)
      • 23. Wu, J., Wang, F., Wang, Q., et al: ‘An improved zero potential circuit for readout of a two-dimensional resistive sensor array’, Sensors, 2016, 16, (12), pp. 113.
    4. 4)
      • 20. Wu, J.F.: ‘Scanning approaches of two-dimensional resistive sensor arrays: a review’, IEEE Sens. J., 2017, 17, (4), pp. 914925.
    5. 5)
      • 13. Lazzarini, R., Magni, R., Dario, P.: ‘A tactile array sensor layered in an artificial skin’. Proc. Int. Conf. Intelligent Robots and Systems, 1995, pp. 114119.
    6. 6)
      • 9. Shu, L., Tao, X., Feng, D.D.: ‘A new approach for readout of resistive sensor arrays for wearable electronic applications’, IEEE Sens. J., 2015, 15, (1), pp. 442452.
    7. 7)
      • 10. Wu, J., Wang, Y., Li, J., et al: ‘A novel two-wire fast readout approach for suppressing cable crosstalk in a tactile resistive sensor array’, Sensors, 2016, 16, (5), pp. 112.
    8. 8)
      • 16. Zhang, X., Ye, X.: ‘Zero potential method measurement error analysis for networked resistive sensor arrays’, IET Sci. Meas. Technol., 2016, 11, (3), pp. 235240.
    9. 9)
      • 24. Liu, H., Zhang, Y.F., Liu, Y.W., et al: ‘Measurement errors in the scanning of resistive sensor arrays’, Sens. Actuators A, Phys., 2010, 163, (1), pp. 198204.
    10. 10)
      • 17. Lorussi, F., Rocchia, W., Scilingo, E.P., et al: ‘Wearable, redundant fabric-based sensor arrays for reconstruction of body segment posture’, IEEE Sens. J., 2004, 4, (6), pp. 807818.
    11. 11)
      • 18. Saxena, R.S., Bhan, R.K., Saini, N.K., et al: ‘Virtual ground technique for crosstalk suppression in networked resistive sensors’, IEEE Sens. J., 2011, 11, (2), pp. 432433.
    12. 12)
      • 19. Kim, J.S., Kwon, D.Y., Choi, B.D.: ‘High-accuracy, compact scanning method and circuit for resistive sensor arrays’, Sensors, 2016, 16, (2), pp. 116.
    13. 13)
      • 22. Wu, J.F., Wang, L.: ‘Cable crosstalk suppression in resistive sensor array with 2-wire S-NSDE-EP method’, J. Sens., 2016, 1, pp. 19.
    14. 14)
      • 3. Wu, J.F., Li, J., Song, A.: ‘Readout circuit based on double voltage feedback loops in the two-dimensional resistive sensor array: design, modelling and simulation evaluation’, IET Sci. Meas. Technol., 2016, 11, (3), pp. 288296.
    15. 15)
      • 2. Wu, J.F., Wang, L., Li, J.Q.: ‘A handwriting input method based on the thermal cue of the fingertip’, Measurement, 2016, 91, pp. 557564.
    16. 16)
      • 1. Tung, S.T., Yao, Y., Glisic, B.: ‘Sensing sheet: the sensitivity of thin-film full-bridge strain sensors for crack detection and characterization’, Meas. Sci. Technol., 2014, 25, (7), pp. 114.
    17. 17)
      • 5. Tise, B.: ‘A compact high resolution piezoresistive digital tactile sensor’. Proc. Int. Conf. Robotics and Automation, April 1988, pp. 760764.
    18. 18)
      • 12. Cheng, M.Y., Tsao, C.M., Lai, Y.Z., et al: ‘The development of a highly twistable tactile sensing array with stretchable helical electrodes’, Sens. Actuators A, Phys., 2011, 166, (2), pp. 226233.
    19. 19)
      • 21. Wu, J., Li, J.: ‘Approximate model of zero potential circuits for the 2-D networked resistive sensor array’, IEEE Sens. J., 2016, 16, (9), pp. 30843090.
    20. 20)
      • 4. Snyder, W.E., Clair, J.S.: ‘Conductive elastomers as sensor for industrial parts handling equipment’, IEEE Trans. Instrum. Meas., 1978, 27, (1), pp. 9499.
    21. 21)
      • 6. Speeter, T.H.: ‘A tactile sensing system for robotic manipulation’, Int. J. Robot. Res., 1990, 9, (6), pp. 2536.
    22. 22)
      • 7. Prutchi, D., Arcan, M.: ‘Dynamic contact stress analysis using a compliant sensor array’, Measurement, 1993, 11, (3), pp. 197210.
    23. 23)
      • 11. Yang, Y.J., Cheng, M.Y., Shih, S.C., et al: ‘A 32 × 32 temperature and tactile sensing array using PI-copper films’, Int. J. Adv. Manuf. Technol., 2010, 46, (9–12), pp. 945956.
    24. 24)
      • 8. Vidal-Verdú, F., Oballe-Peinado, Ó., Sánchez-Durán, J.A., et al: ‘Three realizations and comparison of hardware for piezoresistive tactile sensors’, Sensors, 2011, 11, (3), pp. 32493266.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2016.0530
Loading

Related content

content/journals/10.1049/iet-smt.2016.0530
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading