Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Optimal allocation of plug-in electric vehicle capacity to produce active, reactive and distorted powers using differential evolution based artificial bee colony algorithm

Plug-in electric vehicles (PEVs) can produce active, reactive and distorted power as well as pollution reduction. This study proposes an optimisation framework to allocate the PEVs capacity to generate each power component considering to grid and vehicle constraints, technical concerns and market price. In the proposed framework, PEVs compete with active power-line conditioners (APLCs) to generate distorted power and with generators to produce active and reactive power. An objective function is defined which includes distribution system operator (DSO) payment for each market participant. This function is minimised based on a hybrid optimisation algorithm (HOA) combining artificial bee colony (ABC) and differential evolution (DE) algorithms subject to grid and vehicles constraints. In the presented algorithm, a novel self-adaptive modification phase is proposed to improve overall ability of the algorithm for optimisation applications. The effectiveness and efficiency of the method is demonstrated on a low-voltage network with 134 customers as a case study.

References

    1. 1)
      • 39. Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: ‘GSA: a gravitational search algorithm’, Inf. Sci., 2009, 179, pp. 22322248.
    2. 2)
      • 20. Roh, Y.-S., Moon, Y.-J., Gong, J.-C., et al: ‘Active power factor correction (PFC) circuit with resistor-free zero-current detection’, IEEE Trans. Power Electron., 2011, 26, pp. 630637.
    3. 3)
      • 31. Basetti, V., Chandel, A.K.: ‘Hybrid power system state estimation using taguchi differential evolution algorithm’, IET Sci. Meas. Technol., 2015, 9, pp. 449466.
    4. 4)
      • 25. Zhong, J., Bhattacharya, K.: ‘Toward a competitive market for reactive power’, IEEE Trans. Power Syst., 2002, 17, pp. 12061215.
    5. 5)
      • 35. Alvarado-Iniesta, A., Garcia-Alcaraz, J.L., Rodriguez-Borbon, M.I., et al: ‘Optimization of the material flow in a manufacturing plant by use of artificial bee colony algorithm’, Expert Syst. Appl., 2013, 40, pp. 47854790.
    6. 6)
      • 44. Liang, J., Qu, B., Suganthan, P.: ‘Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization’. Zhengzhou China and Technical Report, Computational Intelligence Laboratory, Zhengzhou University, Nanyang Technological University, Singapore, 2013.
    7. 7)
      • 36. Karaboga, D.: ‘An idea based on honey bee swarm for numerical optimization’. Technical Report-TR06, Engineering Faculty, Computer Engineering Department, Erciyes University, 2005.
    8. 8)
      • 8. Al-Awami, A.T., Sortomme, E.: ‘Coordinating vehicle-to-grid services with energy trading’, IEEE Trans. Smart Grid, 2012, 3, pp. 453462.
    9. 9)
      • 40. Oftadeh, R., Mahjoob, M., Shariatpanahi, M.: ‘A novel meta-heuristic optimization algorithm inspired by group hunting of animals: hunting search’, Comput. Math. Appl., 2010, 60, pp. 20872098.
    10. 10)
      • 24. Rabiee, A., Shayanfar, H., Amjady, N.: ‘Multiobjective clearing of reactive power market in deregulated power systems’, Appl. Energy, 2009, 86, pp. 15551564.
    11. 11)
      • 41. Yang, X.-S.: ‘A new metaheuristic bat-inspired algorithm’, in Cruz, C., González, J.R., Krasnogor, N., et al (EDs.): ‘Nature inspired cooperative strategies for optimization (NICSO 2010)’ (Springer, 2010), pp. 6574.
    12. 12)
      • 32. Li, G., Niu, P., Xiao, X.: ‘Development and investigation of efficient artificial bee colony algorithm for numerical function optimization’, Appl. Soft Comput., 2012, 12, pp. 320332.
    13. 13)
      • 3. Sioshansi, R., Denkolm, P.: ‘The value of plug-in hybrid electric vehicles as grid resources’, Energy, 2010, 31, pp. 123.
    14. 14)
      • 29. Ahirwal, M.K., Kumar, A., Singh, G.K.: ‘Sub-band adaptive filtering method for electroencephalography/event related potential signal using nature inspired optimisation techniques’, IET Sci. Meas. Technol., 2015, 9, pp. 987997.
    15. 15)
      • 23. Farahani, H.F., Khalili, M., Rabiee, A., et al: ‘On the application of plug-in hybrid electric vehicle to compensate network harmonics: a multiobjective approach’, Sci. Iran. Trans. D Comput. Sci. Eng. Electric., 2014, 21, p. 2177.
    16. 16)
      • 5. Mets, K., Verschueren, T., Haerick, W., et al: ‘Optimizing smart energy control strategies for plug-in hybrid electric vehicle charging’. Network Operations and Management Symposium Workshops (NOMS Wksps), 2010 IEEE/IFIP, 2010, pp. 293299.
    17. 17)
      • 22. Liu, G.Q., Hu, T., Wu, L.N.: ‘Research on harmonic elimination of electric vehicle charging station based on APF’. Applied Mechanics and Materials, 2013, pp. 33923395.
    18. 18)
      • 42. Zheng, Y.-J.: ‘Water wave optimization: a new nature-inspired metaheuristic’, Comput. Oper. Res., 2015, 55, pp. 111.
    19. 19)
      • 37. Mehrabian, A.R., Lucas, C.: ‘A novel numerical optimization algorithm inspired from weed colonization’, Ecol. Inf., 2006, 1, pp. 355366.
    20. 20)
      • 14. Farahani, H.F., Shayanfar, H., Ghazizadeh, M.: ‘Multi-objective clearing of reactive power market including plug-in hybrid electric vehicle’, Electr. Power Compon. Syst., 2013, 41, pp. 197220.
    21. 21)
      • 17. Wanik, M., Siam, M.F., Ayob, A., et al: ‘Harmonic measurement and analysis during electric vehicle charging’, Engineering, 2013, 5, p. 215.
    22. 22)
      • 15. Farahani, H.F., Shayanfar, H., Ghazizadeh, M.: ‘Modeling of stochastic behavior of plug-in hybrid electric vehicle in a reactive power market’, Electr. Eng., 2014, 96, pp. 113.
    23. 23)
      • 13. Farahani, H.F., Shayanfar, H., Ghazizadeh, M.: ‘Incorporation of plug in hybrid electric vehicle in the reactive power market’, J. Renew. Sustain. Energy, 2012, 4, p. 053123.
    24. 24)
      • 21. Crosier, R., Wang, S.: ‘DQ-frame modeling of an active power filter integrated with a grid-connected, multifunctional electric vehicle charging station’, IEEE Trans. Power Electron., 2013, 28, pp. 57025716.
    25. 25)
      • 45. ‘DIgSILENT GmbH Germany. DIgSILENT PowerFactory software package. Available at http://www.digsilent.de’, 2014.
    26. 26)
      • 30. Li, Y., Wang, Y., Li, B.: ‘A hybrid artificial bee colony assisted differential evolution algorithm for optimal reactive power flow’, Int. J. Electric. Power Energy Syst., 2013, 52, pp. 2533.
    27. 27)
      • 46. Esmaili, M., Goldoust, A.: ‘Multi-objective optimal charging of plug-in electric vehicles in unbalanced distribution networks’, Int. J. Electric. Power Energy Syst., 2015, 73, pp. 644652.
    28. 28)
      • 4. Wu, C., Mohsenian-Rad, H., Huang, J.: ‘Vehicle-to-aggregator interaction game’, IEEE Trans. Smart Grid, 2012, 3, pp. 434442.
    29. 29)
      • 6. El-Zonkoly, A.: ‘Intelligent energy management of optimally located renewable energy systems incorporating PHEV’, Energy Convers. Manage., 2014, 84, pp. 427435.
    30. 30)
      • 47. Richardson, P., Flynn, D., Keane, A.: ‘Optimal charging of electric vehicles in low-voltage distribution systems’, IEEE Trans. Power Syst., 2012, 27, pp. 268279.
    31. 31)
      • 19. Jiang, C., Torquato, R., Salles, D., et al: ‘Method to assess the power-quality impact of plug-in electric vehicles’, IEEE Trans. Power Deliv., 2014, 29, pp. 958965.
    32. 32)
      • 18. Jouybari-Moghaddam, H.: ‘Influence of electric vehicle charging rates on transformer derating in harmonic-rich battery charger applications’, Arch. Electr. Eng., 2012, 61, pp. 483497.
    33. 33)
      • 1. Tan, K.M., Ramachandaramurthy, V.K., Yong, J.Y.: ‘Integration of electric vehicles in smart grid: a review on vehicle to grid technologies and optimization techniques’, Renew. Sustain. Energy Rev., 2016, 53, pp. 720732.
    34. 34)
      • 2. Choma, E.F., Ugaya, C.M.L.: ‘Environmental impact assessment of increasing electric vehicles in the Brazilian fleet’, J. Clean Prod., 2017, 152, pp. 497507.
    35. 35)
      • 10. Montazeri-Gh, M., Mahmoodi-K, M.: ‘Optimized predictive energy management of plug-in hybrid electric vehicle based on traffic condition’, J. Clean Prod., 2016, 139, pp. 935948.
    36. 36)
      • 34. Gao, W.-f., Liu, S.-y., Huang, L.-l.: ‘A novel artificial bee colony algorithm based on modified search equation and orthogonal learning’, IEEE Trans. Cybern., 2013, 43, pp. 10111024.
    37. 37)
      • 38. Simon, D.: ‘Biogeography-based optimization’, IEEE Trans. Evol. Comput., 2008, 12, pp. 702713.
    38. 38)
      • 9. Lefeng, S., Qian, Z., Yongjian, P.: ‘The reserve trading model considering V2G reverse’, Energy, 2013, 59, pp. 5055.
    39. 39)
      • 33. Abraham, A., Jatoth, R.K., Rajasekhar, A.: ‘Hybrid differential artificial bee colony algorithm’, J. Comput. Theor. Nanosci., 2012, 9, pp. 249257.
    40. 40)
      • 43. Yazdani, M., Jolai, F.: ‘Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm’, J. Comput. Design Eng., 2016, 3, pp. 2436.
    41. 41)
      • 12. Kisacikoglu, M.C., Kesler, M., Tolbert, L.M.: ‘Single-phase on-board bidirectional PEV charger for V2G reactive power operation’, IEEE Trans. Smart Grid, 2015, 6, pp. 767775.
    42. 42)
      • 26. Ziari, I., Jalilian, A.: ‘A new approach for allocation and sizing of multiple active power-line conditioners’, IEEE Trans. Power Deliv., 2010, 25, pp. 10261035.
    43. 43)
      • 16. Arghandeh, R., Onen, A., Jung, J., et al: ‘Harmonic interactions of multiple distributed energy resources in power distribution networks’, Electr. Power Syst. Res., 2013, 105, pp. 124133.
    44. 44)
      • 28. Dwivedi, A.K., Ghosh, S., Londhe, N.D.: ‘Low power 2D finite impulse response filter design using modified artificial bee colony algorithm with experimental validation using field-programmable gate array’, IET Sci. Meas. Technol., 2016, 10, pp. 671678.
    45. 45)
      • 11. Kesler, M., Kisacikoglu, M.C., Tolbert, L.M.: ‘Vehicle-to-grid reactive power operation using plug-in electric vehicle bidirectional offboard charger’, IEEE Trans. Ind. Electron., 2014, 61, pp. 67786784.
    46. 46)
      • 7. Zhong, J., He, L., Li, C., et al: ‘Coordinated control for large-scale EV charging facilities and energy storage devices participating in frequency regulation’, Appl. Energy, 2014, 123, pp. 253262.
    47. 47)
      • 27. Karaboga, D., Basturk, B.: ‘A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm’, J. Global Optimiz., 2007, 39, pp. 459471.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2016.0444
Loading

Related content

content/journals/10.1049/iet-smt.2016.0444
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address