Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Feature parameters extraction of power transformer PD signal based on texture features in TF representation

Ultra-high-frequency (UHF) method is an effective approach to power transformer partial discharge (PD) detection. The feature parameters extracted from UHF PD signal can be applied to insulation defect type recognition. In this study, a novel feature parameters extraction method based on texture features in time–frequency (TF) representation is proposed. PD detections of four typical insulation defects were performed on a 110kV oil-immersed power transformer. Time-domain waveform and corresponding TF representations or images of UHF PD signals were obtained. About 36 texture features were extracted from the grey-level co-occurrence matrix of TF images. The texture features were reduced into six new feature parameters by principal component analysis. These feature parameters were used as input of the support vector machine classifier for defect type recognition. The recognition accuracies of four kinds of typical defects reached 97.67, 97.00 97.67 and 98.33% proving that the proposed extracted feature parameters are suitable for insulation defect type recognition in power transformer.

References

    1. 1)
      • 16. Liu, Y., Zhou, W., Yang, S., et al: ‘A novel miniaturized Vivaldi antenna using tapered slot edge with resonant cavity structure for ultra-wide band applications’, IEEE Antennas Wirel. Propag. Lett., 2016, 15, (1), pp. 18811884.
    2. 2)
      • 20. Soh, L.K., Tsatsoulis, C.: ‘Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices’, IEEE Trans. Geosci. Remote Sens., 1999, 37, (2), pp. 780795.
    3. 3)
      • 26. Wang, K., Li, J., Zhang, S., et al: ‘A new image-oriented feature extraction method for partial discharges’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (2), pp. 10151024.
    4. 4)
      • 6. Chen, H.C.: ‘Partial discharge identification system for high-voltage power transformers using fractal feature based extension method’, IET Sci. Meas. Technol., 2013, 7, (2), pp. 7784.
    5. 5)
      • 4. Robles, G., Sánchez-Fernández, M., Albarracin Sanchez, R., et al: ‘Antenna parametrization for the detection of partial discharges’, IEEE Trans. Instrum. Meas., 2013, 62, (5), pp. 932941.
    6. 6)
      • 2. Hou, H., Sheng, G., Jiang, X.: ‘Robust time delay estimation method for locating UHF signals of partial discharge in substation’, IEEE Trans. Power Deliv., 2013, 28, (3), pp. 19601968.
    7. 7)
      • 28. Fushiki, T.: ‘Estimation of prediction error by using K-fold cross-validation’, Stat. Comput.’, 2011, 21, (2), pp. 137146.
    8. 8)
      • 8. Florkowski, M., Florkowska, B.: ‘Wavelet-based partial discharge image denoising’, IET Gener. Transm. Distrib., 2007, 1, (2), pp. 340347.
    9. 9)
      • 3. Hou, H., Sheng, G., Jiang, X.: ‘Localization algorithm for the PD source in substation based on L-shaped antenna array signal processing’, IEEE Trans. Power Deliv., 2015, 30, (1), pp. 472479.
    10. 10)
      • 7. Wang, K., Liao, R., Yang, L., et al: ‘Optimal features selected by NSGA-II for partial discharge pulses separation based on time–frequency representation and matrix decomposition’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (3), pp. 825838.
    11. 11)
      • 13. Li, J., Jiang, T., Harrison, R.F., et al: ‘Recognition of ultra-high frequency partial discharge signals using multi-scale features’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (4), pp. 14121420.
    12. 12)
      • 27. Wang, T., Ye, X., Wang, L., et al: ‘Grid search optimized SVM method for dish-like underwater robot attitude prediction’. Fifth Int. Joint Conf. on Computational Sciences and Optimization, 2012, pp. 839843.
    13. 13)
      • 18. Liu, Y., Zhou, W., Li, P., et al: ‘An ultra-high frequency partial discharge signal de-noising method based on a generalized S-transform and module time-frequency matrix’, Sensors, 2016, 10, (6), pp. 54695502.
    14. 14)
      • 21. Honeycutt, C.E., Plotnick, R.: ‘Image analysis techniques and gray-level co-occurrence matrices (GLCM) for calculating bioturbation indices and characterizing biogenic sedimentary structures’, Comput. Geosci., 2008, 34, (11), pp. 14611472.
    15. 15)
      • 19. Stockwell, R.G., Mansinha, L., Lowe, R.P.: ‘Localization of the complex spectrum: the S transform’, IEEE Trans. Signal Process., 1996, 44, (4), pp. 9981001.
    16. 16)
      • 17. Zhu, M.X., Xue, J.Y., Zhang, J.N., et al: ‘Classification and separation of partial discharge ultra-high-frequency signals in a 252 kV gas insulated substation by using cumulative energy technique’, IET Sci. Meas. Technol., 2016, 10, (4), pp. 316326.
    17. 17)
      • 5. Jiang, T., Li, J., Zheng, Y., et al: ‘Improved bagging algorithm for pattern recognition in UHF signals of partial discharges’, Energies, 2011, 4, (7), pp. 10871101.
    18. 18)
      • 23. Manivannan, K., Aggarwal, P., Devabhaktuni, V., et al: ‘Particulate matter characterization by gray level co-occurrence matrix based support vector machines’, J. Hazardous Mater., 2012, 223, pp. 94103.
    19. 19)
      • 9. Evagorou, D., Kyprianou, A., Lewin, P.L., et al: ‘Feature extraction of partial discharge signals using the wavelet packet transform and classification with a probabilistic neural network’, IET Sci. Meas. Technol., 2010, 4, (3), pp. 177192.
    20. 20)
      • 10. Gu, F.C., Chang, H.C., Kuo, C.C.: ‘Gas-insulated switchgear PD signal analysis based on Hilbert–Huang transform with fractal parameters enhancement’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (4), pp. 10491055.
    21. 21)
      • 12. Liao, R., Guo, C., Wang, K., et al: ‘Adaptive optimal kernel time–frequency representation technique for partial discharge ultra-high-frequency signals classification’, Electr. Power Compon. Syst., 2015, 43, (4), pp. 449460.
    22. 22)
      • 25. Chang, C.C., Lin, C.J.: ‘LIBSVM: a library for support vector machines’, ACM (Am. Comput. Mach.) Trans. Intell. Syst. Technol., 2011, 2, (3), pp. 27:127:27.
    23. 23)
      • 24. Liao, R.J., Yang, L.J., Li, J., et al: ‘Aging condition assessment of transformer oil–paper insulation model based on partial discharge analysis’, IEEE Trans. Dielectr. Electr. Insul., 2011, 18, (1), pp. 303311.
    24. 24)
      • 22. Haralick, R.M., Shanmugam, K., Dinstein, I.H.: ‘Textural features for image classification’, IEEE Trans. Syst. Man Cybern. Syst., 1973, 3, (6), pp. 610621.
    25. 25)
      • 15. Tang, J., Wang, D., Fan, L., et al: ‘Feature parameters extraction of GIS partial discharge signal with multifractal detrended fluctuation analysis’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (5), pp. 30373045.
    26. 26)
      • 29. Heermann, P.D., Khazenie, N.: ‘Classification of multispectral remote sensing data using a back-propagation neural network’, IEEE Trans. Geosci. Remote Sens., 1992, 30, (1), pp. 8188.
    27. 27)
      • 14. Hoshino, T., Maruyama, S., Sakakibara, T.: ‘Simulation of propagating electromagnetic wave due to partial discharge in GIS using FDTD’, IEEE Trans. Power Deliv., 2009, 24, (1), pp. 153159.
    28. 28)
      • 11. Wang, K., Li, J., Zhang, S., et al: ‘A hybrid algorithm based on S transform and affinity propagation clustering for separation of two simultaneously artificial partial discharge sources’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (2), pp. 10421060.
    29. 29)
      • 1. Chan, J.C., Ma, H., Saha, T.K.: ‘Hybrid method on signal de-noising and representation for online partial discharge monitoring of power transformers at substations’, IET Sci. Meas. Technol., 2015, 9, (7), pp. 890899.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2016.0342
Loading

Related content

content/journals/10.1049/iet-smt.2016.0342
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address