Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Use of electric field orientation as an index for estimating the contribution of model complexity in transcranial direct current stimulation forward head model development

The study evaluates the role of human skull composition and brain anisotropy in the context of transcranial direct current stimulation (tDCS) based predictive modeling. Four head models were developed and each proposed attribute (cancellous bone and brain anisotropy) was compared with the isotropic model. By employing a single high-definition montage, the efficacy of each attribute in shaping induced electric field was analyzed by its magnitude and orientation information. Relative error (RE) was used to estimate the variation in field magnitude. It was observed that for a given high-definition montage, the brain anisotropy contributed to 5% change (RE) in the strength of the gray matter (GM) electric field and 10% for the white matter (WM). Inclusion of diploe in the model resulted in 45% variation in the magnitude of the brain electric field. On average, brain anisotropy contributed to field deviations of up to 20 degrees in major WM fiber tracts. Skull heterogeneity caused field deviations of up to 35 degrees in diploe, 15 degrees in subcutaneous fat and marginal variations in brain regions. These simulation results demonstrated the importance of considering refinement in forward models of tDCS, especially; the role of diploe should be considered for more accurate field assessments.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
      • 64. Oostendorp, T.F., Hengeveld, Y.A., Wolters, C.H., Stinstra, J., van Elswijk, G., Stegeman, D.F.: ‘Modeling transcranial DC stimulation’.  30th Annual Int. Conf. of the IEEE, Engineering in Medicine and Biology Society, 2008. EMBS 2008.2008, pp. 42264229.
    5. 5)
      • 40. Chris, C., Vasken, K., Kwan, K.s., Pike, G.B.: ‘BrainWeb: online interface to a 3D MRI simulated brain database’.
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
      • 46. Kim, S., Kim, T., Zhou, Y., Singh, M.: ‘Influence of conductivity tensors in the finite element model of the head on the forward solution of EEG’, 2001.
    12. 12)
      • 38. Lee, W., Seo, H., Kim, S., Cho, M., Lee, S., Kim, T.S.: ‘Influence of white matter anisotropy on the effects of transcranial direct current stimulation: a finite element study’. Presented at the 13th Int. Conf. on Biomedical Engineering, 2009.
    13. 13)
      • 63. Dannhauer, M., Brooks, D., Tucker, D., MacLeod, R.: ‘A pipeline for the simulation of transcranial direct current stimulation for realistic human head models using SCIRun/BioMesh3D’. Conf. Proc. Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society Conference, 2012.
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
      • 81. Hyun Sang, S., Won Hee, L., Young Sun, C., Ji-Hwan, K., Tae-Seong, K.: ‘Reduced spatial focality of electrical field in tDCS with ring electrodes due to tissue anisotropy’. Annual Int. Conf. of the IEEEPresented at the Engineering in Medicine and Biology Society (EMBC), 2010, pp. 20532056.
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
      • 83. Francis, J.T., Gluckman, B.J., Schiff, S.J.: ‘Sensitivity of neurons to weak electric fields’, J. Neurosci., 2003, 23, pp. 72557261.
    34. 34)
      • 72. Purpura, D.P., McMurtry, J.G.: ‘Intracellular activities and evoked potential changes during polarization of motor cortex’, J. Neurophysiol., 1965, 28, pp. 166185.
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
      • 50. Miranda, P.C., Pajevic, S., Pierpoali, C., Hallett, M., Basser, P.: ‘The distribution of currents induced in the brain by magnetic stimulation: A finite element analysis incorporating DT-MRI-derived conductivity data’. Presented at the Proc. Int. Soc. Mag. Reson, 2001.
    40. 40)
    41. 41)
    42. 42)
    43. 43)
    44. 44)
    45. 45)
    46. 46)
    47. 47)
    48. 48)
      • 43. Woolsey, T.A., Hanaway, J., Gado, M.H.: ‘The brain atlas: a visual guide to the human central nervous system’ (Wiley, Hoboken, NJ, 2008).
    49. 49)
    50. 50)
    51. 51)
    52. 52)
    53. 53)
    54. 54)
    55. 55)
    56. 56)
    57. 57)
    58. 58)
    59. 59)
    60. 60)
    61. 61)
    62. 62)
    63. 63)
    64. 64)
      • 19. Borckardt, J.J., Bikson, M., Frohman, H., et al: ‘A pilot study of the tolerability and effects of high-definition transcranial direct current stimulation (HD-tDCS) on pain perception’, J Pain, vol. 13, pp. 112–20, Feb 2012..
    65. 65)
    66. 66)
    67. 67)
    68. 68)
    69. 69)
    70. 70)
    71. 71)
    72. 72)
    73. 73)
    74. 74)
    75. 75)
      • 36. Wagner, S., Rampersad, S.M., Aydin, U., et al: ‘Investigation of tDCS volume conduction effects in a highly realistic head model’, J. Neural. Eng., 2014, vol. 11, p. 016002, Feb 2014.
    76. 76)
    77. 77)
    78. 78)
    79. 79)
    80. 80)
    81. 81)
    82. 82)
    83. 83)
    84. 84)
    85. 85)
      • 61. Malmivuo, J., Plonsey, R.: ‘Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields’ (Oxford University Press, USA, 1995).
    86. 86)
    87. 87)
    88. 88)
      • 52. Tensaouti, F., Lotterie, J.A., Berry, I.: ‘Fiber tracking on the phantom dataset by using Sisyphe software’. Presented at the MICCAI workshop on Diffusion Modelling and the Fiber Cup (DMFC'09), London, United Kingdom, 2009.
    89. 89)
    90. 90)
      • 93. Wang, L., Zhong, X., Zhang, L., Tiwari, D., Mao, H.: ‘Ultra-short TE (UTE) imaging of skull and a quantitative comparison of skull images obtained from MRI and CT’.
    91. 91)
    92. 92)
    93. 93)
    94. 94)
      • 37. Rampersad, S., Stegeman, D., Oostendorp, T.: ‘Single-layer skull approximations perform well in transcranial direct current stimulation modeling’, IEEE Trans. Neural Syst. Rehabil. Eng., 2012, PP, pp. 11.
    95. 95)
    96. 96)
    97. 97)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2014.0220
Loading

Related content

content/journals/10.1049/iet-smt.2014.0220
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address