Robust algorithm based on decimated Padè approximant technique for processing sensor data in leak detection in waterworks

Robust algorithm based on decimated Padè approximant technique for processing sensor data in leak detection in waterworks

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Science, Measurement & Technology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Although today water is becoming more and more precious, its major waste is caused by transportation. The authorities in charge of the management of water pipes indicate double-digit percentage of waste, sometimes it even exceeds 50% the amount of water mostly lost by inefficiency of distribution waterworks. In this study, the authors present an alternative method of spectral analysis, used for detecting leaks in water pipes, with respect to classical spectral methods as direct Fourier transform/fast Fourier transform. They have used decimated Padè approximant (DPA), where the input time signal points or auto-correlation functions are given via measurements or computations, and the task is to reconstruct the unknown components as the harmonic variables in terms of the fundamental complex frequencies and amplitudes. They have also introduced decimated linear predictor technique as direct consequence of the DPA, since they differ only in one step, namely the calculation of the amplitudes.


    1. 1)
      • 1. EEA: ‘First report on sustainable use of water’ (European Environmental Agency, 1999).
    2. 2)
      • 2. COVIRI: ‘Italian water resources control committee’. Annual Report to Parliament on Water Service State for Year 2003’, Rome. Available at, accessed July 2004.
    3. 3)
      • 3. Liou, C.P., Tian, J.: ‘Leak detection – a transient flow simulation approach’, J. Energy Resour. Technol., Am. Soc. Mech. Eng., 1995, 117, (3), pp. 243248 (doi: 10.1115/1.2835348).
    4. 4)
      • 4. Liou, C.P.: ‘Pipeline leak detection by impulse response extraction’, J. Fluids Eng., Am. Soc. Mech. Eng., 1998, 120, (4), pp. 833838 (doi: 10.1115/1.2820746).
    5. 5)
      • 5. Nash, G.A., Karney, B.W.: ‘Efficient inverse transient analysis in series pipe systems’, J. Hydraul. Eng., 1999, 125, (7), pp. 761764 (doi: 10.1061/(ASCE)0733-9429(1999)125:7(761)).
    6. 6)
      • 6. Covas, D., Ramos, H.: ‘Case studies of leak detection and location in water pipe systems by inverse transient analysis’, J. Water Resour. Plan. Manage., 2010, 136, (2), pp. 248257 (doi: 10.1061/(ASCE)0733-9496(2010)136:2(248)).
    7. 7)
      • 7. Lay-Ekuakille, A., Vergallo, P., Trotta, A.: ‘Impedance method for leak detection in zigzag pipelines’, Meas. Sci. Rev., 2010, 10, (6), pp. 209213 (doi: 10.2478/v10048-010-0036-0).
    8. 8)
      • 8. Lay-Ekuakille, A., Vendramin, G., Trotta, A., Vanderbemdem, P.: ‘STFT-based spectral analysis of urban waterworks leakage detection’. Proc. XIX IMEKO World Congress, Lisbon, Portugal, September 2009, pp. 15.
    9. 9)
      • 9. Lay-Ekuakille, A., Vendramin, G., Trotta, A.: ‘Spectral analysis of leak detection in a zigzag pipeline: a filter diagonalization method-based algorithm application’, Measurement, 2009, 42, (3), pp. 358367 (doi: 10.1016/j.measurement.2008.07.007).
    10. 10)
      • 10. Lay-Ekuakille, A., Vendramin, G., Trotta, A.: ‘Robust spectral leak detection of complex pipelines using filter diagonalization method’, IEEE Sens. J., 2010, 9, (11), pp. 16051614 (doi: 10.1109/JSEN.2009.2027410).
    11. 11)
      • 11. Lay-Ekuakille, A., Pariset, C., Trotta, A.: ‘FDM-based leak detection of complex pipelines: robust technique for eigenvalues assessment’, Meas. Sci. Technol., 2010, 21, (11), pp. 111 (doi: 10.1088/0957-0233/21/11/115403).
    12. 12)
      • 12. Belkić, D., Belkić, K.: ‘Decisive role of mathematical methods in early cancer diagnostics: optimized Padè-based magnetic resonance spectroscopy’, J. Math. Chem., 2007, 42, (1), pp. 135 (doi: 10.1007/s10910-007-9227-9).
    13. 13)
      • 13. Main, J., Dando, P.A., Belkić, D., Taylor, H.S.: ‘Decimation and harmonic inversion of periodic orbit signals’, J. Phys. A: Math. Gen., 2000, 33, pp. 12471263 (doi: 10.1088/0305-4470/33/6/311).
    14. 14)
      • 14. Guo, W.-H., Li, W.-J., Huang, Y.-Z.: ‘Computation of resonant frequencies and quality factors of cavities by FDTD technique and padé approximation’, IEEE Microw. Wirel. Compon. Lett., 2001, 11, (5), pp. 223225 (doi: 10.1109/7260.923035).
    15. 15)
      • 15. Belkic, D., Belkic, K.: ‘The fast Padé transform in magnetic resonance spectroscopy for potential improvements in early cancer diagnostics’, Phys. Med. Biol., 2005, 50, pp. 43854408 (doi: 10.1088/0031-9155/50/18/010).
    16. 16)
      • 16. Available at April 2013.
    17. 17)
      • 17. Wan, J., Yu, Y., Wu, Y., Feng, R., Yu, N.: ‘Hierarchical leak detection and localization method in natural gas pipeline monitoring sensor networks’, Sensors, 2012, 12, (1), pp. 189214 (doi: 10.1109/JSEN.2011.2126568).
    18. 18)
      • 18. Lay-Ekuakille, A., Trotta, A., Vendramin, G.: ‘FFT-based spectral response for smaller pipeline leak detection’. Proc. IEEE Instrumentation and Measurement Technology Conf., Singapore, May 2009, pp. 328331.
    19. 19)
      • 19. Lay Ekuakille, A., Vendramin, G., Trotta, A., Vanderbemden, P.: ‘FFT- based algorithm improvements for detecting leakage in pipelines’. Proc. Sixth IEEE – Int. Multi-Conf. SSD, Djerba, Tunisia, March 2009.
    20. 20)
      • 20. Yu, H.-K., Kim, K.-S., Han, G.-H., Yu, D.-K.: ‘Liquid leakage thin film-tape sensor’, IEEE Sens. J., 2012, 12, (6), pp. 20482051 (doi: 10.1109/JSEN.2011.2181159).
    21. 21)
      • 21. Tylman, W., KolczyÅski, J., Anders, G.J.: ‘Fully automatic AI-based leak detection system’, Energy, 2010, 35, (9), pp. 38383848 (doi: 10.1016/
    22. 22)
      • 22. Deng, X., Yang, W.Q.: ‘Fusion research of electrical tomography with other sensors for two-phase flow measurement’, Meas. Sci. Rev., 2012, 12, (2), pp. 6267 (doi: 10.2478/v10048-012-0008-7).
    23. 23)
      • 23. Magon, C.J., Lima, J.F., Donoso, J.P., et al: ‘Deconvolution of the EPR spectra of vanadium oxide nanotubes’, J. Magn. Reson., 2012, 222, pp. 2633 (doi: 10.1016/j.jmr.2012.06.004).
    24. 24)
      • 24. Nasirian, A., Maghrebi, M.F., Yazdani, S.: ‘Leakage detection in water distribution network based on a new heuristic genetic algorithm model’, JWARP, 2013, 5, (3), pp. 294303 (doi: 10.4236/jwarp.2013.53030).

Related content

This is a required field
Please enter a valid email address