Evolutionary approach to generating test data for data flow test

Evolutionary approach to generating test data for data flow test

For access to this article, please select a purchase option:

Buy eFirst article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
— Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Software testing consumes a significant portion of software effort. Program entities such as branch or definition–use pairs (DUPs) are used in diverse software development tasks. In this study, the authors present a novel evolution-based approach to generating test data for all definition–use coverage. First, the subset of DUPs, which can ensure the coverage adequacy, is computed by a reduction algorithm for the whole DUPs. Then they apply a genetic algorithm to generate test data for the subset of DUPs. Furthermore, the fitness of an individual depends on the matching degree between the traversed path and the definition-clear path of each target DUP. They also investigate the coverage and the size of test cases of test data generation by applying the authors’ approach on 15 widely used subject programs. The experimental results show that their approach can reduce the size of test cases that generated without affecting the coverage rate.

Related content

This is a required field
Please enter a valid email address