http://iet.metastore.ingenta.com
1887

Feature extraction based on information gain and sequential pattern for English question classification

Feature extraction based on information gain and sequential pattern for English question classification

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Software — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The purpose of question classification (QC) is to assign a question to an appropriate category from the set of predefined categories that constitute a question taxonomy. Selected question features are able to significantly improve the performance of QC. However, feature extraction, particularly syntax feature extraction, has a high computational cost. To maintain or enhance performance without syntax features, this study presents a hybrid approach to semantic feature extraction and lexical feature extraction. These features are generated by improved information gain and sequential pattern mining methods, respectively. Selected features are then fed into classifiers for questions classification. Benchmark testing is performed using the public UIUC data set. The results reveal that the proposed approach achieves a coarse accuracy of 96% and fine accuracy of 90.4%, which is superior to existing methods.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-sen.2018.0006
Loading

Related content

content/journals/10.1049/iet-sen.2018.0006
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address