http://iet.metastore.ingenta.com
1887

Progress on approaches to software defect prediction

Progress on approaches to software defect prediction

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
— Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Software defect prediction is one of the most popular research topics in software engineering. It aims to predict defect-prone software modules before defects are discovered, therefore it can be used to better prioritise software quality assurance effort. In recent years, especially for recent 3 years, many new defect prediction studies have been proposed. The goal of this study is to comprehensively review, analyse and discuss the state-of-the-art of defect prediction. The authors survey almost 70 representative defect prediction papers in recent years (January 2014–April 2017), most of which are published in the prominent software engineering journals and top conferences. The selected defect prediction papers are summarised to four aspects: machine learning-based prediction algorithms, manipulating the data, effort-aware prediction and empirical studies. The research community is still facing a number of challenges for building methods and many research opportunities exist. The identified challenges can give some practical guidelines for both software engineering researchers and practitioners in future software defect prediction.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-sen.2017.0148
Loading

Related content

content/journals/10.1049/iet-sen.2017.0148
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address