http://iet.metastore.ingenta.com
1887

Reliability analysis of safety-critical and control systems: a state-of-the-art review

Reliability analysis of safety-critical and control systems: a state-of-the-art review

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Software — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In the past several decades, significant attention has been devoted to the quality assessment of safety-critical (SC) and control systems from many perspectives such as its reliability, safety, and performance. Researchers are continuing to put their efforts to ensure these dependability attributes. This study summarises the state of the art in the field of the reliability of such systems. A detailed literature survey is conducted to investigate the various techniques/models to ensure the reliability of the computer-based systems. The limitations of these models are also analysed with respect to their applicability in SC systems, for which a case study of nuclear power plant system has been taken. The direction for future research is suggested, based on the case study, to extend the further scope of research.

References

    1. 1)
      • 1. Eric Wong, W., Debroy, V., Restrepo, A.: ‘The role of software in recent catastrophic accidents’, IEEE Reliability Society 2009 Annual Technology Report, pp. 18, 2009.
    2. 2)
      • 2. BBC News: ‘Russia plane crash: ‘terror act’ downed A321 over Egypt's Sinai’. 2015. Available at http://www.bbc.com/news/world-europe-34840943, accessed 16 March 2016.
    3. 3)
      • 3. Esther Sunanda, B., Seetharamaiah, P.: ‘Modeling of safety-critical systems using Petri nets’, ACM SIGSOFT Softw. Eng. Notes, 2015, 40, (1), pp. 17.
    4. 4)
      • 4. Balagurusamy, E.: ‘Basic concept of reliability’, in Dennis Lawrence, J. (EDs.): ‘Reliability engineering’ (Tata McGraw-Hill Education, India, 2010), ch. 1, sec. 1.2, p. 2.
    5. 5)
      • 5. Dennis Lawrence, J.: ‘Software reliability and safety in nuclear reactor protection systems’. Division of reactor controls and human factors, Office of Nuclear Reactor Regulation, US Nuclear Regulatory Commission, November1993.
    6. 6)
      • 6. Rous, M.:‘Performance’, 2006. Available at http://www.whatis.techtarget.com/definition/performance, accessed 14 March 2016.
    7. 7)
      • 7. Hall, T., Beecham, S., Bowes, D., et al: ‘A systematic literature review on fault prediction performance in software engineering’, IEEE Trans. Softw. Eng., 2012, 38, (6), pp. 12761304.
    8. 8)
      • 8. MacDonell, S., Shepperd, M., Kitchenham, B., et al: ‘How reliable are systematic reviews in empirical software engineering?’, IEEE Trans. Softw. Eng., 2010, 36, (5), pp. 676687.
    9. 9)
      • 9. Brereton, P., Kitchenham, B.A., Budgen, D., et al: ‘Lessons from applying the systematic literature review process within the software engineering domain’, J. Syst. Softw., 2007, 80, (4), pp. 571583.
    10. 10)
      • 10. Kitchenham, B., Pretorius, R., Budgen, D., et al: ‘Systematic literature reviews in software engineering – a tertiary study’, Inf. Softw. Technol., 2010, 52, (8), pp. 792805.
    11. 11)
      • 11. Goel, A., Graves, R.J.: ‘Electronic system reliability: collating prediction models’, IEEE Trans. Device Mater. Reliab., 2006, 6, (2), pp. 258265.
    12. 12)
      • 12. Foucher, B., Boullie, J., Meslet, B., et al: ‘A review of reliability prediction methods for electronic devices’, Microelectron. Reliab., 2002, 42, (8), pp. 11551162.
    13. 13)
      • 13. US MIL-HDBK-338, Version B: ‘Military handbook: electronic reliability design handbook’ (Department of Defense (DoD), 1998).
    14. 14)
      • 14. DeVale, J.: ‘Traditional reliability’, 1998. Available at http://www.users.ece.cmu.edu/~koopman/des_s99/traditional_reliability/, accessed 06 March 2017.
    15. 15)
      • 15. Nikolaidis, E., Ghiocel, D.M., Singhal, S.: ‘Engineering design reliability handbook’ (CRC Press, 2004).
    16. 16)
      • 16. NASA: ‘NASA software safety standard NASA-STD 8719.13C’, Washington DC, 2013.
    17. 17)
      • 17. MIL-STD-882E: ‘US department of defense standard practice: system safety’, 2012.
    18. 18)
      • 18. Bowles, J.B.: ‘A survey of reliability-prediction procedures for microelectronic devices’, IEEE Trans. Reliab., 1992, 41, (1), pp. 212.
    19. 19)
      • 19. Sommerville, I.: ‘Software engineering’ (Pearson, Boston, 2011).
    20. 20)
      • 20. Watson, G.F.: ‘MIL reliability: a new approach’, IEEE Spectr., 1992, 29, (8), pp. 4649.
    21. 21)
      • 21. Gaver, D.P.Jr.: ‘Time to failure and availability of paralleled systems with repair’, IEEE Trans. Reliab., 1963, 12, (2), pp. 3038.
    22. 22)
      • 22. Denson, W.K.: ‘Rebuttal to: a critique of the reliability-analysis-center failure-rate-model for plastic encapsulated microcircuits’, IEEE Trans. Reliab., 1998, 47, (4), pp. 419424.
    23. 23)
      • 23. Ryerson, C.M.: ‘Mathematical modeling for predicting failure rates of component parts’. IEEE Reliability Physics Symp. Sixth Annual, November 1967, pp. 1015.
    24. 24)
      • 24. Faraji, M., Kiyono, J.: ‘Infrastructure performance oriented reliability assessment using weighed stochastic Petri net’. WCEE LISBO, 24–28 September 2012, pp. 16.
    25. 25)
      • 25. Kleyner, A., Volovoi, V.: ‘Application of Petri nets to reliability prediction of occupant safety systems with partial detection and repair’, Reliab. Eng. Syst. Saf., 2010, 95, (6), pp. 606613.
    26. 26)
      • 26. Ramos, G., Sanchez, J.L., Torres, A., et al: ‘Power systems security evaluation using Petri nets’, IEEE Trans. Power Deliv., 25, 2010, (1), pp. 316332.
    27. 27)
      • 27. Wang, B., Tian, G., Liang, Y., et al: ‘Reliability modeling and evaluation of electric vehicle motor by using fault tree and extended stochastic Petri nets’, J. Appl. Math., 2014, 2014, (2014), pp. 19.
    28. 28)
      • 28. Kumar, R., Jackson, A.: ‘Accurate reliability modeling using Markov analysis with non-constant hazard rates’. Aerospace Conf., 2009 IEEE, 2009, pp. 17.
    29. 29)
      • 29. Liu, Z., Liu, Y., Cai, B., et al: ‘Application of Petri nets to performance evaluation of subsea blowout preventer system’, ISA Trans., 2015, 54, pp. 240249.
    30. 30)
      • 30. Mihalache, A., Guerin, F., Barreau, M., et al: ‘Reliability analysis of mechatronic systems using censored data and Petri nets: application on an antilock brake system (ABS)’. Reliability and Maintainability Symp. RAMS'06 IEEE Annual, January 2006, pp. 140145.
    31. 31)
      • 31. Mohan, K.K., Verma, A.K., Srividya, A., et al: ‘Early quantitative software reliability prediction using Petri-nets’. ICIIS IEEE Conf. Industrial and Information Systems, December 2008, pp. 16.
    32. 32)
      • 32. Huang, C.-Y., Lin, C.-T., Sue, C.-C.: ‘Software reliability prediction and analysis during operational use’. Information Technology: Research and Education, ITRE IEEE Conf., June 2005, pp. 317332.
    33. 33)
      • 33. Kong, W., Shi, Y., Smidis, C.S.: ‘Early software reliability prediction using cause-effect graphing analysis’. Reliability and Maintainability Symp., 2007 RAMS ‘07 Annual, Orlando, FL, January 2007, pp. 173178.
    34. 34)
      • 34. Kumar, K.S., Misra, R.B.: ‘An enhanced model for early software reliability prediction using software engineering metrics’. 2008 Second Int. Conf. Secure System Integration and Reliability Improvement, Yokohama, July 2008, pp. 177178.
    35. 35)
      • 35. Liu, Y., Chen, C.-J.: ‘Dynamic reliability assessment for nonrepairable multistate systems by aggregating multilevel imperfect inspection data’, IEEE Trans. Reliab., 2017, 66, (2), pp. 281297.
    36. 36)
      • 36. Yacoub, S., Cukic, B., Ammar, H.H.: ‘A scenario-based reliability analysis approach for component-based software’, IEEE Trans. Reliab., 2004, 53, (4), pp. 465480.
    37. 37)
      • 37. Jia, X., Shen, J., Xing, R.: ‘Reliability analysis for repairable multistate two-unit series systems when repair time can be neglected’, IEEE Trans. Reliab., 2016, 65, (1), pp. 208216.
    38. 38)
      • 38. Brosch, F., Koziolek, H., Buhnova, B., et al: ‘Architecture-based reliability prediction with the Palladio component model’, IEEE Trans. Softw. Eng., 2012, 38, (6), pp. 13191339.
    39. 39)
      • 39. Rene, D., Hassane, A.: ‘Discrete, continuous, and hybrid Petri nets’, IEEE Control Syst., 2008, 28, (3), pp. 8184.
    40. 40)
      • 40. Jenkins, L., Khincha, H.P.: ‘Deterministic and stochastic petri net models of protection schemes’, IEEE Trans. Power Deliv., 2006, 7, (1), pp. 8490.
    41. 41)
      • 41. Sanchez, J.L., Ramos, G., Rios, M.A.: ‘Modeling of operative sequences of protections in power transmission systems using Petri nets’. Transmission and Distribution Conf. and Exposition: Latin America, IEEE/PES, 13–15 August 2008, pp. 16.
    42. 42)
      • 42. Zafiropoulos, E.P., Dialynas, E.N.: ‘Reliability prediction and failure mode effects and criticality analysis (FMECA) of electronic devices using fuzzy logic’, Int. J. Qual. Reliab. Manage., 2005, 22, (2), pp. 183200.
    43. 43)
      • 43. IEEE Std. 982.2–1988: ‘IEEE guide for the use of IEEE standard dictionary of measures to produce reliable software, IEEE’, 1988.
    44. 44)
      • 44. Cheng, B., Jeffery, R.: ‘Comparing inspection strategies for software requirements specifications’. Proc. the 1996 Australian Software Engineering Conf., July 1996, pp. 203211.
    45. 45)
      • 45. Abimbola, M., Khan, F., Khakzad, N.: ‘Dynamic safety risk analysis of offshore drilling’, J. Loss Prevention Process Ind., 2014, 30, pp. 7485.
    46. 46)
      • 46. Bucci, P., Kirschenbaum, J., Anthony Mangan, L., et al: ‘Construction of event-tree/fault-tree models from a Markov approach to dynamic system reliability’, Reliab. Eng. Syst. Saf., 2008, 93, (11), pp. 16161627.
    47. 47)
      • 47. Sadou, N., Demmou, H.: ‘Reliability analysis of discrete event dynamic systems with Petri nets’, Reliab. Eng. Syst. Saf., 2009, 94, (11), pp. 18481861.
    48. 48)
      • 48. Goble, W.M.Dr.: ‘Control systems safety evaluation and reliability’ (ISA, NC, 2010, 3rd edn.).
    49. 49)
      • 49. Fan, J., Yung, K.-C., Pecht, M.: ‘Lifetime estimation of high-power white LED using degradation-data-driven method’, IEEE Trans. Device Mater. Reliab., 2012, 12, (2), pp. 470477.
    50. 50)
      • 50. Billinton, R., Wang, P.: ‘Teaching distribution system reliability evaluation using Monte Carlo simulation’, IEEE Trans. Power Syst., 1999, 14, (2), pp. 397403.
    51. 51)
      • 51. Atzori, B., Meneghetti, G., Susmel, L.: ‘On the use of the modified Manson–Coffin curves to predict fatigue lifetime in the low-cycle fatigue regime’. Proc. IGF Workshops on Multiaxial Fatigue Ferrara, Italy, 2005, 2005, no. 324, pp. 97106.
    52. 52)
      • 52. Ostergren, W.J.: ‘A damage function and associated failure equations for predicting hold time and frequency effects in elevated temperature, low cycle fatigue’, J. Test. Eval., 1976, 4, (5), pp. 327339.
    53. 53)
      • 53. Tian, Z.: ‘A neural network approach for remaining useful life prediction utilizing both failure and suspension data’. 2010 Proc. – Annual Reliability and Maintainability Symp. (RAMS), San Jose, CA, 25 January 2010, pp. 16.
    54. 54)
      • 54. Gokhle, S.S., Wong, W.E., Trivedi, K.S., et al: ‘An analytical approach to architecture-based software reliability prediction’. Proc. IEEE Int. Computer Performance and Dependability Symp. 1998 IPDS'98, September 1998, pp. 1322.
    55. 55)
      • 55. Goseva-Popstojanova, K., Trivedi, K.S.: ‘Failure correlation in software reliability models’, IEEE Trans. Reliab., 2000, 49, (1), pp. 3748.
    56. 56)
      • 56. Jamil, M., Thomas, M.S., Kumar, P.: ‘Modelling of EHV transmission line protection scheme using Petri nets’. , Proc. IEEE Int. Conf. Industrial Technology 2000, vol. 1, 19 January 2000, pp. 633637.
    57. 57)
      • 57. Mentes, A., Helvacioglu, I.H.: ‘An application of fuzzy fault tree analysis for spread mooring systems’, Ocean Eng.., 2011, 38, (2–3), pp. 285294.
    58. 58)
      • 58. Wu, J., Yan, S., Xie, L.: ‘Reliability analysis method of a solar array by using fault tree analysis and fuzzy reasoning Petri net’, Acta Astronaut., 2011, 69, (11–12), pp. 960968.
    59. 59)
      • 59. Muppala, J., Ciardo, G., Trivedi, K.S.: ‘Stochastic reward nets for reliability prediction’, Commun. Reliabi. Maintainab. Serviceability, 1994, 1, (2), pp. 920.
    60. 60)
      • 60. Walpole, E., Myers, R.H., Myers, S.L., et al: ‘Probability and statistics for engineers and scientists’, vol. 5 (Macmillan, New York, 1993).
    61. 61)
      • 61. Weibull, W.: ‘A statistical distribution function of wide applicability’, J. Appl. Mech., 1951, 18, pp. 293297.
    62. 62)
      • 62. Zhong, D., Qi, Z.: ‘A Petri net based approach for reliability prediction of web services’. OTM Confederated Int. Conf. On the Move to Meaningful Internet Systems, Springer, Berlin Heidelberg, October 2006, pp. 116125.
    63. 63)
      • 63. Jung, H.S., Seong, P.H.: ‘Prediction of safety critical software operational reliability from test reliability using testing environment factors’, J. Korean Nucl. Soc., 1999, 31, (I), pp. 4957.
    64. 64)
      • 64. Okamura, H., Dohi, T., Osaki, S.: ‘A reliability assessment method for software products in operational phase – proposal of an accelerated life testing model’, Electron. Commun. Jpn. (part III: Fundam. Electron. Sci.), 2001, 84, (8), pp. 2533.
    65. 65)
      • 65. Yang, B., Xie, M.: ‘A study of operational and testing reliability in Sothare reliability analysis’, Reliab. Eng. Syst. Saf., 2000, 70, (2), pp. 323329.
    66. 66)
      • 66. Yamada, S.: ‘Software reliability measurement during operational phase and its application’, J. Comput. Softw. Eng., 1993, 1, (4), pp. 389402.
    67. 67)
      • 67. Koziolek, H., Brosch, F.: ‘Parameter dependencies for component reliability specifications’, Electron. Notes Theor. Comput. Sci., 2009, 253, (1), pp. 2338.
    68. 68)
      • 68. Li, M., Wei, Y., Desovski, D., et al: ‘Validation of a methodology for assessing software reliability’. Proc. 15th Int. Symp. Software Reliability Engineering (ISSRE'04), November 2004, pp. 6676.
    69. 69)
      • 69. Jiang, R., Murthy, D.N.P.: ‘Mixture of Weibull distributions—parametric characterization of failure rate function’, Appl. Stoch. Models Data Anal., 1998, 14, (1), pp. 4765.
    70. 70)
      • 70. Singh, H., Cortellessa, V., Cukic, B., et al: ‘A Bayesian approach to reliability prediction and assessment of component based systems’.  Proc. 12th Int. Symp. IEEEStochasticSoftware Reliability Engineering 2001 ISSRE 2001, November 2001, pp. 1221.
    71. 71)
      • 71. Littlewood, B., Sofer, A.: ‘A Bayesian modification to the Jelinski–Moranda software reliability growth model’, Softw. Eng. J., 1987, 2, (2), pp. 3041.
    72. 72)
      • 72. Ramamoorthy, C.V., Bastani, F.B.: ‘An input domain based approach to the quantitative estimation of software reliability’. Proc. Taipei Seminar on Software Engineering, August 1979, pp. 4352.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-sen.2017.0053
Loading

Related content

content/journals/10.1049/iet-sen.2017.0053
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address