access icon free Assisted surface redesign by perturbing its point cloud representation

This research study explores the use of point clouds for design geometrically complex surfaces based on genetic morphogenesis. To this end, a point-based genetic algorithm and the use of massive unstructured point clouds are proposed as a manipulation method of complex geometries. The intent of the algorithm is to improve the design experience, thus different solutions can be presented to designers. The main objective of this work is to provide examples to be adopted as user own or to help them in the creative process. This is not about providing them with a tool to ‘do’ the designer's creative work, but using it as a creative tool in which the user retains control of it. The powerfulness of this approach relies on the fact that the user can use any/diverse criteria (objective or subjective) to evaluate the individuals proposed as possible solutions. As part of this study, the convergence of the algorithm and the ability of diversity in the final populations of the search process will be demonstrated. Various examples of the use of the algorithm are displayed.

Inspec keywords: computational geometry; computer graphics; genetic algorithms

Other keywords: assisted surface redesign; unstructured point clouds; point cloud representation; geometrically complex surface design; point-based genetic algorithm; genetic morphogenesis

Subjects: Graphics techniques; Optimisation techniques; Computational geometry

References

    1. 1)
      • 25. De Jong, K.A.: ‘An analysis of the behavior of a class of genetic adaptive systems’. PhD thesis, Ann Arbor, MI, USA, 1975, AAI7609381.
    2. 2)
      • 4. Rocker: ‘Interface: between analog and digital systems’ (2010).
    3. 3)
      • 26. Molga, M., Smutnicki, C.: ‘Test functions for optimization needs2005.
    4. 4)
      • 15. Fraternali, F.: ‘A thrust network approach to the equilibrium problem of unreinforced masonry vaults via polyhedral stress functions’, Mech. Res. Commun., 2010, 37, (2), pp. 198204.
    5. 5)
      • 3. Monge, G., Zalt, K., Halbleder-Einband, R.: ‘Géométrie descriptive: leçons données aux écoles normales, L'An 3 de la république’ (Baudouin, Imprimeur du Corps législatif et de l'Institut national, Thiverval-Grignon, France, 1798).
    6. 6)
      • 9. Johnson, S.: ‘Emergence: the connected lives of ants, brains, cities, and software’ (Scribner, New York, USA, 2012).
    7. 7)
      • 21. Todd, S., Latham, W.: ‘Evolutionary art and computers’ (Academic Press, Orlando, USA, 1992).
    8. 8)
      • 1. Vasari, G., Foster, J.: ‘Lives of the most eminent painters, sculptors, and architects’ (George Bell, London, 1872), v. 3.
    9. 9)
      • 5. Durand, J.: ‘Précis des Leçons d'Architecture: données a l’école royale polytechnique’ (No. v. 2 in Précis des Leçons d'Architecture: données a l’école royale polytechnique. Chez l'auteur a l’École Poytechnique, 1817.
    10. 10)
      • 10. Leach, N.: ‘Digital morphogenesis’ (2009).
    11. 11)
      • 18. Bentley, P.: ‘Evolutionary design by computers. No. Part 1’ (Morgan Kaufman Publishers, Burlington, USA, 1999).
    12. 12)
      • 14. Tang, C., Sun, X., Gomes, A., et al: ‘Form-finding with polyhedral meshes made simple’, ACM Trans. Graph., 2014, pp. 7079, 33–34.
    13. 13)
      • 7. Marcos, C.L.: ‘Complexity, digital consciousness and open form: a new design paradigm’ (2010).
    14. 14)
      • 27. Sundberg, D.: ‘8 spruce street. Metals in construction’ (The Steel Institute of New York, New York, USA, 2011).
    15. 15)
      • 22. Rovira, J., Wonka, P., Sbert, M., et al: ‘Point sampling with uniformly distributed lines’. Point-Based Graphics, Stony Brook, USA, 2005, pp. 109118.
    16. 16)
      • 12. Andersen, P., Salomon, D.: ‘The architecture of patterns’ (W. W. Norton, New York, USA, 2010).
    17. 17)
      • 24. Machado, P., Cardoso, A.: ‘All the truth about NEvAr’, Appl. Intell., Special Issue Creative Syst., 2002, 16, (2), pp. 101119.
    18. 18)
      • 20. Dawkins, R.: ‘The blind watchmaker’ (Penguin Science. Penguin Books, London, 1991).
    19. 19)
      • 8. Turing, A.: ‘The chemical basis of morphogenesis’, Philos. Trans. R. Soc. B, 1952, 237, pp. 3772.
    20. 20)
      • 6. Dunn, N.: ‘Digital fabrication in architecture’ (Laurence King Publishing, Durrington, UK, 2012).
    21. 21)
      • 2. Dürer, A., Strauss, W.: ‘The painter's manual: a manual of measurement of lines, areas, and solids by means of compass and ruler assembled: for the use of all lovers of art with appropriate illustrations arranged to be printed in the year MDXXV. The literary remains of Albrecht Dürer’ (Abaris Books, New York, USA, 1977), pp. 1472.
    22. 22)
      • 16. Holland, J.: ‘Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence’ (University of Michigan Press, Ann Arbor, USA, 1975).
    23. 23)
      • 17. Goldberg, D.: ‘Genetic algorithms in search, optimization, and machine learning’ (Artificial Intelligence, Addison-Wesley, Boston, MA, USA, 1989).
    24. 24)
      • 23. Machado, P., Cardoso, A.: ‘NEvAr – the assessment of an evolutionary art tool’. AISB'00 Symp. Creative and Cultural Aspects and Applications of AI and Cognitive Science, Birmingham, UK, 2000.
    25. 25)
      • 11. Delanda, M.: ‘Deleuze and the use of the genetic algorithm in architecture’ (2005).
    26. 26)
      • 13. Jiang, C., Tang, C., Tomicic, M., et al: ‘Interactive modeling of architectural freeform structures - combining geometry with fabrication and statics’, Advances Architect. Geom., 2014, 2014, pp. 95108.
    27. 27)
      • 19. Renner, G., Ekárt, A: ‘Genetic algorithms in computer aided design’, Computer-Aided Design, 2003, 35, (8), pp. 709726.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-sen.2016.0298
Loading

Related content

content/journals/10.1049/iet-sen.2016.0298
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading