Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Non-negative scattering power decomposition for PolSAR data interpretation

This study presents a hybrid technique for polarimetric synthetic aperture radar (PolSAR) data decomposition. The proposed technique aims to overcome the negative power problem of model-based decomposition methods. To achieve this, matrix rotation theory is used along with hybrid scattering models. The matrix rotation theory is utilised on the basis of underlying dominant scatterer to remove maximal of the cross-polarisation power generated by the coupling between orthogonal states of polarisation. Removing the coupling energy between orthogonal states not only optimised the PolSAR coherency matrix but also transform it more close to reflection symmetry condition. The applicability of the proposed approach is shown through the implementation of hybrid three- and four-component decomposition methods. The proposed hybrid methods are experimentally verified on C-band Radarsat-2 San Francisco and L-band UAVSAR Hayward datasets. For further analysis, different land-cover patches are selected. Moreover, the variations in percentage of negative power pixels are investigated by employing different volume scattering models. Comparative analyses are presented with existing PolSAR decomposition techniques in terms of normalised scattering power means and amount of negative power pixels. All experimental analyses clearly report the superiority of the proposed hybrid approach through improvements over existing PolSAR decomposition techniques along with non-negative scattering powers.

References

    1. 1)
      • 9. Cloude, S.R.: ‘Polarisation: applications in remote sensing’ (Oxford University Press, London, UK, 2009).
    2. 2)
      • 1. Lee, J.S., Pottier, E.: ‘Polarimetric radar imaging: from basics to applications’ (CRC, Boca Raton, FL, USA, 2009).
    3. 3)
      • 16. Schuler, D.L., Lee, J.S., Kasilingam, D., et al: ‘Measurement of ocean surface slopes and wave spectra using polarimetric SAR image data’, Remote Sens. Environ., 2004, 91, pp. 198211.
    4. 4)
      • 20. Dataset: UAVSAR, NASA 2010. Retrieved from ASF DAAC 28 March 2017.
    5. 5)
      • 2. Cloude, S.R., Pottier, E.: ‘A review of target decomposition theorems in radar polarimetry’, IEEE Trans. Geosci. Remote Sens., 1996, 34, pp. 498518.
    6. 6)
      • 6. Yamaguchi, Y., Yajima, Y., Yamada, H.: ‘A four-component decomposition of PolSAR images based on the coherency matrix’, IEEE Trans. Geosci. Remote Sens., 2006, 3, pp. 292296.
    7. 7)
      • 5. Yamaguchi, Y., Moriyama, T.: ‘Four-component scattering model for polarimetric SAR image decomposition’, IEEE Trans. Geosci. Remote Sens., 2005, 43, pp. 16991706.
    8. 8)
      • 4. Freeman, A., Durden, S.L.: ‘A three-component scattering model for polarimetric SAR data’, IEEE Trans. Geosci. Remote Sens., 1998, 36, pp. 963973.
    9. 9)
      • 3. Cloude, S.R., Pottier, E.: ‘An entropy based classification scheme for land applications of polarimetric SAR’, IEEE Trans. Geosci. Remote Sens., 1997, 35, pp. 6878.
    10. 10)
      • 7. Yamaguchi, Y., Sato, A., Boerner, W.M., et al: ‘Four-component scattering power decomposition with rotation of coherency matrix’, IEEE Trans. Geosci. Remote Sens., 2011, 49, pp. 22512258.
    11. 11)
      • 14. Cui, Y., Yamaguchi, Y., Yang, J., et al: ‘On complete model-based decomposition of polarimetric SAR coherency matrix data’, IEEE Trans. Geosci. Remote Sens., 2014, 52, pp. 19912001.
    12. 12)
      • 10. Yajima, Y., Yamaguchi, Y., Sato, R., et al: ‘POLSAR image analysis of wetlands using a modified four-component scattering power decomposition’, IEEE Trans. Geosci. Remote Sens., 2008, 46, pp. 16671673.
    13. 13)
      • 15. Lee, J.S., Schuler, D.L., Ainsworth, T.L.: ‘Polarimetric SAR data compensation for terrain azimuth slope variation’, IEEE Trans. Geosci. Remote Sens., 2000, 38, pp. 21532163.
    14. 14)
      • 17. Sato, A., Yamaguchi, Y., Singh, G., et al: ‘Four-component scattering power decomposition with extended volume scattering model’, IEEE Geosci. Remote Sens. Lett., 2012, 9, pp. 166170.
    15. 15)
      • 8. Van Zyl, J.J., Arii, M., Kim, Y.: ‘Model-based decomposition of polarimetric SAR covariance matrices constrained for nonnegative eigenvalues’, IEEE Trans. Geosci. Remote Sens., 2011, 49, pp. 34523459.
    16. 16)
      • 12. Singh, G., Yamaguchi, Y., Park, S.-E.: ‘General four-component scattering power decomposition with unitary transformation of coherency matrix’, IEEE Trans. Geosci. Remote Sens., 2013, 51, pp. 30143022.
    17. 17)
      • 19. An, W., Cui, Y., Yang, J.: ‘Three-component model-based decomposition for polarimetric SAR data’, IEEE Trans. Geosci. Remote Sens., 2010, 48, pp. 27322739.
    18. 18)
      • 13. Singh, G., Yamaguchi, Y., Park, S.-E., et al: ‘Hybrid freeman/eigenvalue decomposition method with extended volume scattering model’, IEEE Geosci. Remote Sens. Lett., 2013, 10, pp. 8185.
    19. 19)
      • 11. Lee, J.S., Ainsworth, T.L.: ‘The effect of orientation angle compensation on coherency matrix and polarimetric target decompositions’, IEEE Trans. Geosci. Remote Sens., 2011, 49, pp. 5364.
    20. 20)
      • 18. Nghiem, S. V., Yueh, S. H., Kwok, R., et al: ‘Symmetry properties in polarimetric remote sensing’, Radio Sci., 1992, 27, pp. 693711.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2017.0581
Loading

Related content

content/journals/10.1049/iet-rsn.2017.0581
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address