Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Contribution of auxiliary coherent radar receiver to target's velocity estimation

Recent progress in bistatic radar techniques can be used to improve performances of classical monostatic radar. A prominent limitation of coherent radar is its inability to measure the complete velocity vector (magnitude and direction) of a detected target. A single coherent detection can provide range-rate only. At least two detections, separated in time, are needed to estimate the target's velocity vector. This study discusses how the velocity vector can be determined by two simultaneous detections spaced in distance. The second detection is obtained by an auxiliary distant bistatic coherent receiver; an approach proposed in the 1990s to enhance meteorological radar. Being a very simple case of a distributed radar system allows for a simple demonstration of how to calculate the target's position and velocity vector and how to analyse the estimation accuracy, including geometric dilution of precision plots of the velocity error. Also discussed are two methods to identify correct data association when more than one target is detected.

References

    1. 1)
      • 13. Torriery, D.J.: ‘Statistical theory of passive location systems’, IEEE Trans. Aerosp. Electron. Syst., 1984, 20, (2), pp. 183198.
    2. 2)
      • 6. Griffiths, H., ‘Passive bistatic radar’, in Sidiropoulos, N.D., Gini, F., Chellappa, R. (Eds.): ‘Academic press library in signal processing’ (Elsevier, Oxford, UK, 2014), vol. 2, ch. 16, pp. 813855.
    3. 3)
      • 12. Lee, H.B.: ‘A novel procedure for assessing the accuracy of hyperbolic multilateration systems’, IEEE Trans. Aerosp. Electron. Syst., 1975, 11, (1), pp. 215.
    4. 4)
      • 3. Satoh, S., Wurman, J.: ‘Accuracy of wind fields observed by a bistatic Doppler radar network’, J. Atmos. Ocean. Tech., 2003, 20, pp. 10771091.
    5. 5)
      • 10. Ai-Ashwal, W.A., Balleri, A, Griffiths, H.D., et al: ‘Measurements of bistatic radar sea clutter’. IEEE Radar Conf., Kansas City, MO, USA, May 2011, pp. 217221.
    6. 6)
      • 16. Sandberg, J.S., Inggs, M.R.: ‘Synchronizing network radar using all-in-view GPS-disciplined oscillators’. IEEE Radar Conf., Seattle, WA, USA, May 2017, pp. 16401645.
    7. 7)
      • 2. Wurman, J., Randal, M., Frush, C.L, et al: ‘Design of a bistatic dual-Doppler radar for retrieving vector winds using one transmitter and a remote low-gain passive receiver’, Proc. IEEE, 1994, 82, (12), pp. 18611872.
    8. 8)
      • 11. Sorenson, H.W.: ‘Parameter estimation – principles and problems’ (Marcel Dekker, New York, NY, USA, 1980).
    9. 9)
      • 5. Griffiths, H.D., Baker, C.J., Sammartino, P.F., et al: ‘MIMO as a distributed radar system’, in Li, J., Stoica, P. (Eds): ‘MIMO radar signal processing’ (Wiley, Hoboken, NJ, USA, 2009), pp. 319363.
    10. 10)
      • 15. Cohen, I., Elster, R., Levanon, N.: ‘Good practical continuous waveform for active bistatic radar’, IET Radar Sonar Navig., 2016, 10, (4), pp. 798806.
    11. 11)
      • 14. Levanon, N.: ‘Lowest GDOP in 2-D scenarios’, IEE Proc., Radar Sonar Navig., 2000, 147, (3), pp. 149155.
    12. 12)
      • 9. Ngo, M.T., Gregers-Hansen, V., Ward, H.R.: ‘Transmitter noise compensation – a signal processing technique for improving clutter suppression’. IEEE Conf. on Radar, Verona, NY, USA, April 2006.
    13. 13)
      • 8. Wanchun, L., Qiu, T., Chengfeng, H., et al: ‘Location algorithm for moving target in non-coherent distributed multiple-input multiple-output radar systems’, IET Signal Process., 2017, 11, (5), pp. 503514.
    14. 14)
      • 7. Du, Y., Ping, W.: ‘An explicit solution for target localization in noncoherent distributed MIMO radar system’, IEEE Signal Process. Lett., 2014, 21, (9), pp. 10931097.
    15. 15)
      • 4. Willis, N.J.: ‘Bistatic radar’ (SciTech, Raleigh, NC, USA, 2005, 2nd edn.).
    16. 16)
      • 1. Wurman, J., Heckman, S., Boccippio, D.: ‘A bistatic multiple-Doppler radar network’, J. Appl. Meteorol., 1993, 32, pp. 18021814.
    17. 17)
      • 17. Wang, W.Q.: ‘Time and phase synchronization via direct-path signal for bistatic synthetic aperture radar system’, IET Radar Sonar Navig., 2008, 2, (1), pp. 111.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2017.0299
Loading

Related content

content/journals/10.1049/iet-rsn.2017.0299
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address