access icon free Interpulse-frequency-agile and intrapulse-phase-coded waveform optimisation for extend-range correlation sidelobe suppression

Conventional stepped-frequency (SF) waveform utilises the frequency step between pulses to span a wide bandwidth. However, the frequency step size is limited by the width of the pulse to prevent the grating lobes, and the first lobe is about −13 dB due to the uniformly sampling in frequency. Modulating the pulses [e.g. phase-coded (PC) modulation or linear frequency modulation] can increase the frequency step size and improve the performance of the sidelobes, but the sidelobes of the modulated SF waveform are still not the best. In this study, a PC frequency-hopping (PCFH) waveform to achieve optimal extend-range correlation sidelobes is presented. The presented waveform applies non-linear frequency evolution, optimal frequency order and different polyphase code to each pulse. In comparison to the SF waveform, the PCFH waveform has much higher degrees of freedom for suppressing extend-range correlation sidelobes. The authors propose a design scheme, which sequentially optimises the interpulse frequency, the FH order and the intrapulse-polyphase code to achieve the optimal extended-range correlation sidelobes. Simulation results validate the performance of the optimised waveform and the feasibility of the involved design method.

Inspec keywords: modulation coding; correlation methods; phase coding; optimisation; frequency modulation; frequency hop communication

Other keywords: PC frequency-hopping; SF waveform; PCFH waveform; linear frequency modulation; interpulse-frequency-agile waveform optimisation; grating lobes; polyphase code; extend-range correlation sidelobe suppression; stepped-frequency waveform; phase-coded modulation; PC modulation; nonlinear frequency evolution; intrapulse-phase-coded waveform optimisation; optimal frequency order

Subjects: Codes; Optimisation techniques; Multiple access communication; Signal processing and detection; Radio links and equipment

References

    1. 1)
      • 22. Skolnik, M.I.: ‘Radar handbook’, (McGraw-Hill, 2008, 3rd edn.), pp. 397400.
    2. 2)
      • 9. Levanon, N.: ‘Stepped-frequency pulse-train radar signal’, IEE Proc., Radar Sonar Navig., 2002, 149, (6), pp. 297309.
    3. 3)
      • 18. Grefenstette, J.J.: ‘Optimization of control parameters for genetic algorithms’, IEEE Trans. Syst. Man Cybern., 1986, 16, (1), pp. 122128.
    4. 4)
      • 21. Donnell, B.O., Baden, J.M.: ‘Fast gradient descent for multi-objective waveform design’. 2016 IEEE Radar Conf. (RadarConf), 2016.
    5. 5)
      • 20. Baden, J.M., Davis, M.S., Schmieder, L.: ‘Efficient energy gradient calculations for binary and polyphase sequences’, 2015 IEEE Radar Conf. (RadarConf), 2015, pp. 304309.
    6. 6)
      • 1. Gini, F., Maio, A.D., Patton, L.K.: ‘Waveform design and diversity for advanced radar systems’ (Institution of Engineering and Technology, 2012, 1st edn.), pp. 2024.
    7. 7)
      • 6. Levanon, N., Mozeson, E.: ‘Nullifying ACF grating lobes in stepped frequency train of LFM pulses’, IEEE Trans. Aerosp. Electron. Syst., 2003, 39, (2), pp. 694703.
    8. 8)
      • 11. Mao, Z., Wei, Y.: ‘Interpulse frequency and code diversity for range correlation sidelobe suppression’. 2016 IEEE Radar Conf. (RadarConf), May 2016.
    9. 9)
      • 2. Levanon, N., Scharf, A.: ‘Range sidelobes blanking by comparing outputs of contrasting mismatched filters’, IET Radar Sonar Navig., 2009, 3, (3), pp. 265277.
    10. 10)
      • 5. Temple, M.A., Sitler, K.L., Raines, R.A., et al: ‘High range resolution (HRR) improvement using synthetic HRR processing and stepped-frequency polyphase coding’, IEE Proc., Radar Sonar Navig., 2004, 151, (1), pp. 4147.
    11. 11)
      • 13. Zhao, D., Wei, Y.: ‘Adaptive gradient search for optimal sidelobe design of hopped-frequency waveform’, IET Radar Sonar Navig., 2014, 8, (4), pp. 282289.
    12. 12)
      • 4. Sitler, K.L., Temple, M.A., Novack, R.C., et al: ‘High range resolution profiling using phase-coded, stepped-frequency waveforms’, Electron. Lett., 2002, 38, (1), pp. 4648.
    13. 13)
      • 8. Costas, J.P.: ‘A study of a class of detection waveforms having nearly ideal range-Doppler ambiguity properties’, Proc. IEEE, 1984, 72, (8), pp. 9961009.
    14. 14)
      • 16. Tan, L., Tan, T., Yun, G., et al: ‘Genetic algorithms based on clustering for traveling salesman problems’. 2016 12th Int. Conf. Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), 2016, pp. 103108.
    15. 15)
      • 12. Levanon, N., Mozeson, E.: ‘Radar signals’ (John Wiley & Sons Inc., 2004), pp. 4246.
    16. 16)
      • 17. Ye, M., Wang, Y., Dai, C., et al: ‘A hybrid genetic algorithm for the minimum exposure path problem of wireless sensor networks based on a numerical functional extreme model’, IEEE Trans. Veh. Technol., 2016, 65, (10), pp. 86448657.
    17. 17)
      • 7. Gladkova, I.: ‘Analysis of stepped-frequency pulse train design’, IEEE Trans. Aerosp. Electron. Syst., 2009, 45, (4), pp. 12511261.
    18. 18)
      • 15. Li, J., Zhou, M., Sun, Q., et al: ‘Colored traveling salesman problem’, IEEE Trans. Cybern., 2015, 45, (11), pp. 23902401.
    19. 19)
      • 3. He, X., Hu, L., Wu, Z., et al: ‘Optimal sidelobe suppression filters design with a constraint of maximum loss in process gain’. Proc. 2009 IET Int. Radar Conf., 2009.
    20. 20)
      • 10. Touati, N., Tatkeu, C., Chonavel, T., et al: ‘Design and performances evaluation of new Costas-based radar waveforms with pulse coding diversity’, IET Radar Sonar Navig., 2016, 10, (5), pp. 877891.
    21. 21)
      • 14. Cheung, B., Davey, S., Gray, D.: ‘Probabilistic multi-hypothesis tracker for multiple platform path planning’, IET Radar Sonar Navig., 2015, 9, (3), pp. 255265.
    22. 22)
      • 19. Lin, C.H., Liu, J.C., Yao, H.J., et al: ‘Performance evaluation of parallel genetic algorithm using single program multiple data technique’. 2015 Second Int. Conf. Trustworthy Syst. and Their Applications, 2015, pp. 135140.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2017.0204
Loading

Related content

content/journals/10.1049/iet-rsn.2017.0204
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading