http://iet.metastore.ingenta.com
1887

## GNSS attitude determination method through vectorisation approach

£12.50
(plus tax if applicable)
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:

## Thank you

Determining the attitude using GNSS carrier signals is studied. It features an analytical approach to get an estimate as initial guess for iterative algorithms, in three steps. First, baseline vectors are estimated by least-squares method. Second, the constraint of the direction cosine matrix (DCM) is ignored and the least-squares estimates of its 9 elements are solved. Third, a mathematically feasible DCM estimate is extracted from the above estimated free matrix. An error attitude, formulated using the Gibbs vector, is introduced to relate the previously estimated and the true attitude, and the measurement model becomes a nonlinear function of the Gibbs vector. The Gauss-Newton iteration is employed to solve the least-squares problem with this measurement model. The estimate of the roll-pitch-yaw angles and the variance covariance matrix of their estimation errors are extracted from the final solution. Numerical experiments are conducted. With 3 orthogonally mounted 3-meter baselines, 4 visible satellites, and 5-millimeter standard-deviation of the carrier measurements, the accuracy of the analytical solution can be less than 1° in the root mean squared error (RMSE) sense. The convergence of the iteration is rather fast, the RMSE converges after only one iteration, with the converged RMSE less than 0.1°.

### References

1. 1)
• K. Li , J. Zhao , X. Wang .
1. Li, K., Zhao, J., Wang, X., et al: ‘Federated ultra-tightly coupled Gps/Ins integrated navigation system based on vector tracking for severe jamming environment’, IET Radar Sonar Navig., 2016, 10, (6), pp. 10301037.
. IET Radar Sonar Navig. , 6 , 1030 - 1037
2. 2)
• K. Zhang , G. Shan .
2. Zhang, K., Shan, G.: ‘Model-switched Gaussian sum cubature Kalman filter for attitude angle-aided three-dimensional target tracking’, IET Radar Sonar Navig., 2015, 9, (5), pp. 531539.
. IET Radar Sonar Navig. , 5 , 531 - 539
3. 3)
• J. Wu , Z. Zhou , J. Chen .
3. Wu, J., Zhou, Z., Chen, J., et al: ‘Fast complementary filter for attitude estimation using low-cost marg sensors’, IEEE Sens. J., 2016, 16, (18), pp. 69977001.
. IEEE Sens. J. , 18 , 6997 - 7001
4. 4)
• P.J.G. Teunissen .
4. Teunissen, P.J.G.: ‘The least-squares ambiguity decorrelation adjustment: a method for fast Gps integer ambiguity estimation’, J. Geod., 1995, 70, (1–2), pp. 6582.
. J. Geod. , 65 - 82
5. 5)
• P.J.G. Teunissen .
5. Teunissen, P.J.G.: ‘The affine constrained GNSS attitude model and its multivariate integer least-squares solution’, J. Geod., 2012, 86, (7), pp. 547563.
. J. Geod. , 7 , 547 - 563
6. 6)
• P.J.G. Teunissen .
6. Teunissen, P.J.G.: ‘Integer least-squares theory for the GNSS compass’, J. Geod., 2010, 84, (7), pp. 433447.
. J. Geod. , 7 , 433 - 447
7. 7)
• Y. Yang , X. Mao , W. Tian .
7. Yang, Y., Mao, X., Tian, W.: ‘Rotation matrix method based on ambiguity function for GNSS attitude determination’, Sensors, 2016, 16, (6), p. 841.
. Sensors , 6 , 841
8. 8)
• X. Sun , C. Han , P. Chen .
8. Sun, X., Han, C., Chen, P.: ‘Instantaneous GNSS attitude determination a Monte Carlo sampling approach’, Acta Astronaut., 2017, 133, pp. 2429.
. Acta Astronaut. , 24 - 29
9. 9)
• L. Zhao , N. Li , L. Li .
9. Zhao, L., Li, N., Li, L., et al: ‘Real-time GNSS-based attitude determination in the measurement Domain’, Sensors, 2017, 17, p. 296.
. Sensors , 296
10. 10)
• Y. Yao , J. Gao , J. Wang .
10. Yao, Y., Gao, J., Wang, J., et al: ‘Real time cycle slip detection and repair for Beidou triple frequency undifferenced observations’, Surv. Rev., 2016, 48, (350), pp. 367375.
. Surv. Rev. , 350 , 367 - 375
11. 11)
• A. Nadler , I.Y. Bar-Itzhack , H. Weiss .
11. Nadler, A., Bar-Itzhack, I.Y., Weiss, H.: ‘Iterative algorithms for attitude estimation using global positioning system phase measurements’, J. Guid. Control Dyn., 2001, 24, (5), pp. 983990.
. J. Guid. Control Dyn. , 5 , 983 - 990
12. 12)
• I.Y. Bar-Itzhack , P.Y. Montgomery , J.C. Garrick .
12. Bar-Itzhack, I.Y., Montgomery, P.Y., Garrick, J.C.: ‘Algorithms for attitude determination using the global positioning system’, J. Guid. Control Dyn., 1998, 21, (6), pp. 846852.
. J. Guid. Control Dyn. , 6 , 846 - 852
13. 13)
• M.L. Psiaki .
13. Psiaki, M.L.: ‘Batch algorithm for global-positioning-system attitude determination and integer ambiguity resolution’, J. Guid. Control Dyn., 2006, 29, (5), pp. 10701079.
. J. Guid. Control Dyn. , 5 , 1070 - 1079
14. 14)
• Y. Li , M. Murata , B. Sun .
14. Li, Y., Murata, M., Sun, B.: ‘New approach to attitude determination using global positioning system carrier phase measurements’, J. Guid. Control Dyn., 2002, 25, (1), pp. 130136.
. J. Guid. Control Dyn. , 1 , 130 - 136
15. 15)
• C.E. Cohen .
15. Cohen, C.E.: ‘Attitude determination using Gps’. PhD, Stanford University, 1992.
.
16. 16)
• T. Bell .
16. Bell, T.: ‘Global positioning system-based attitude determination and the orthogonal procrustes problem’, J. Guid. Control Dyn., 2003, 26, (5), pp. 820821.
. J. Guid. Control Dyn. , 5 , 820 - 821
17. 17)
• F.L. Markley , J.L. Crassidis . (2014)
17. Markley, F.L., Crassidis, J.L.: ‘Fundamentals of spacecraft attitude determination and control’ (Springer, 2014).
.
18. 18)
• X. Xiao , B. Wang , S. Wang .
18. Xiao, X., Wang, B., Wang, S., et al: ‘Noise analysis and suppression method in attitude determination using the global positioning system (Gps)’, Appl. Math. Comput., 2010, 217, (8), pp. 39853992.
. Appl. Math. Comput. , 8 , 3985 - 3992
19. 19)
• J.L. Crassidis , F.L. Markley .
19. Crassidis, J.L., Markley, F.L.: ‘New algorithm for attitude determination using global positioning system signals’, J. Guid. Control Dyn., 1997, 20, (5), pp. 891896.
. J. Guid. Control Dyn. , 5 , 891 - 896
20. 20)
• P.A. Roncagliolo , J. Garcia , P.I. Mercader .
20. Roncagliolo, P.A., Garcia, J., Mercader, P.I., et al: ‘Maximum-likelihood attitude estimation using Gps signals’, Digit. Signal Process., 2007, 17, (6), pp. 10891100.
. Digit. Signal Process. , 6 , 1089 - 1100
21. 21)
• M.E. Cannon , H. Sun .
21. Cannon, M.E., Sun, H.: ‘Experimental assessment of a non-dedicated Gps receiver system for airborne attitude determination’, ISPRS J. Photogramm. Remote Sens., 1996, 51, (2), pp. 99108.
. ISPRS J. Photogramm. Remote Sens. , 2 , 99 - 108
22. 22)
• X. Zhang , M. Wu , W. Liu .
22. Zhang, X., Wu, M., Liu, W.: ‘Receiver time misalignment correction for Gps-based attitude determination’, J. Navig., 2015, 68, (04), pp. 646664.
. J. Navig. , 4 , 646 - 664
23. 23)
• G. Chang , T. Xu , Q. Wang .
23. Chang, G., Xu, T., Wang, Q.: ‘Baseline configuration for GNSS attitude determination with an analytical least-squares solution’, Meas. Sci. Technol., 2016, 27, (12), p. 125105.
. Meas. Sci. Technol. , 12 , 125105
24. 24)
• F.L. Markley .
24. Markley, F.L.: ‘Attitude determination using vector observations and the singular value decomposition’, J. Astronaut. Sci., 1988, 36, (3), pp. 245258.
. J. Astronaut. Sci. , 3 , 245 - 258
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2017.0160

### Related content

content/journals/10.1049/iet-rsn.2017.0160
pub_keyword,iet_inspecKeyword,pub_concept
6
6
This is a required field