Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Human–vehicle classification using feature-based SVM in 77-GHz automotive FMCW radar

In this study, a human–vehicle classification using a feature-based support vector machine (SVM) in a 77-GHz automotive frequency modulated continuous wave (FMCW) radar system is proposed. As a classification criterion, the authors use a newly defined parameter called root radar cross section which reflects the reflection characteristics of targets. Based on this parameter, three distinctive signal features are extracted from frequency-domain received FMCW radar signals, and they become classification standards used for the SVM. Finally, through measurement results on the test field, the classification performance of the authors’ proposed method is verified, and the average classification accuracy from a four-fold cross data validation is found to be higher than 90%. In addition, the authors’ proposed classification method is applied to distinguish a pedestrian, a vehicle, and a cyclist in a more practical situation, and it also shows good classification performance.

References

    1. 1)
      • 18. Cheng, D.K.: ‘Field and wave electromagnetics’ (Addison-Wesley, 1989, 2nd edn.).
    2. 2)
      • 9. Matsunami, I., Nakamura, R., Kajiwara, A.: ‘RCS measurements for vehicles and pedestrian at 26 and 79 GHz’. The 6th IEEE Int. Conf. on Signal Processing and Communication Systems (ICSPCS), Gold Coast, Australia, December 2012, pp. 14.
    3. 3)
      • 19. Geary, K., Colburn, J.S., Bekaryan, A., et al: ‘Automotive radar target characterization from 22 to 29 GHz and 76 to 81 GHz’. IEEE Radar Conf., Ottawa, Canada, April 2013, pp. 16.
    4. 4)
      • 1. Dollar, P., Wojek, C., Schiele, B., et al: ‘Pedestrian detection: an evaluation of the state of the art’, IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34, (4), pp. 743761.
    5. 5)
      • 16. Yamada, N., Tanaka, Y., Nishikawa, K.: ‘Radar cross section for pedestrian in 76 GHz band’. IEEE European Microwave Conf., Paris, France, October 2005, pp. 14.
    6. 6)
      • 12. Chen, M., Kuloglu, M., Chen, C.-C.: ‘Numerical study of pedestrian RCS at 76-77 GHz’. IEEE Antennas and Propagation Society Int. Symp. (APSURSI), Orlando, USA, July 2013, pp. 19821983.
    7. 7)
      • 21. Geary, K., Colburn, J.S., Bekaryan, A., et al: ‘Characterization of automotive radar targets from 22 to 29 GHz’. IEEE Radar Conf., Atlanta, USA, May 2012, pp. 7984.
    8. 8)
      • 13. Yasugi, M., Cao, Y., Kobayashi, K., et al: ‘79 GHz-band radar cross section measurement for pedestrian detection’. IEEE Asia-Pacific Microwave Conf. Proc. (APMC), Seoul, Republic of Korea, November 2013, pp. 576578.
    9. 9)
      • 10. Chen, M., Chen, C.-C.: ‘RCS patterns of pedestrians at 76-77 GHz’, IEEE Antennas Propag. Mag., 2014, 56, (4), pp. 252263.
    10. 10)
      • 17. Kim, Y., Ling, H.: ‘Human activity classification based on micro-Doppler signatures using a support vector machine’, IEEE Trans. Geosci. Remote Sens., 2009, 47, (5), pp. 13281337.
    11. 11)
      • 7. Wang, Y., Zheng, Y.: ‘An FMCW radar transceiver chip for object positioning and human limb motion detection’, IEEE Sens. J., 2017, 17, (2), pp. 236237.
    12. 12)
      • 5. Villeval, S., Bilik, I., Gurbuz, S.Z.: ‘Application of a 24 GHz FMCW automotive radar for urban target classification’. IEEE Radar Conf., Cincinnati, USA, May 2014, pp. 12371240.
    13. 13)
      • 8. Liaqat, S., Khan, S.A., Ihasn, M.B., et al: ‘Automatic recognition of ground radar targets based on the target RCS and short time spectrum variance’. IEEE Int. Symp. on Innovations in Intelligent Systems and Applications (INISTA), Istanbul, Turkey, June 2011, pp. 164167.
    14. 14)
      • 3. Dorp, P.V., Groen, F.C.A.: ‘Human walking estimation with radar’, IEE Proc. – Radar Sonar Navig., 2003, 150, (5), pp. 356365.
    15. 15)
      • 11. Chen, M., Belgiovane, D., Chen, C.-C.: ‘Radar characteristics of pedestrians at 77 GHz’. IEEE Antennas and Propagation Society Int. Symp. (APSURSI), Memphis, USA, July 2014, pp. 22322233.
    16. 16)
      • 4. Rytel-Andrianik, R., Samczynski, P., Gromek, D., et al: ‘Micro-range, micro-Doppler joint analysis of pedestrian radar echo’. IEEE Signal Processing Symp. (SPSympo), Debe, Poland, June 2015, pp. 14.
    17. 17)
      • 6. Kim, Y., Ha, S., Kwon, J.: ‘Human detection using Doppler radar based on physical characteristics of targets’, IEEE Geosci. Remote Sens. Lett., 2015, 12, (2), pp. 289293.
    18. 18)
      • 15. Schubert, E., Kunert, M., Menzel, W., et al: ‘Human RCS measurement and dummy requirements for the assessment of radar based active pedestrian safety systems’. the 14th IEEE Int. Radar Symp. (IRS), Dresden, Germany, June 2013, pp. 752757.
    19. 19)
      • 14. Belgiovane, D., Chen, C.-C., Chen, M., et al: ‘77 GHz radar scattering properties of pedestrians’. IEEE Radar Conf., Cincinnati, USA, May 2014, pp. 735738.
    20. 20)
      • 2. Enzweiler, M., Gavrila, D.M.: ‘Monocular pedestrian detection: survey and experiments’, IEEE Trans. Pattern Anal. Mach. Intell., 2009, 31, (12), pp. 21792195.
    21. 21)
      • 20. Boyd, S., Vandenberghe, L.: ‘Convex optimization’ (Cambridge University Press, 2004, 1st edn.).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2017.0126
Loading

Related content

content/journals/10.1049/iet-rsn.2017.0126
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address