access icon free Adaptable waveform design for enhanced detection of moving targets

In this study, a spectrum sharing technique is investigated for enhanced detection of moving targets. This approach, the spectrum sensing-multi-objective optimisation technique, passively monitors the electromagnetic environment for radio frequency (RF) emissions radiated by RF systems. This technique then identifies a continuous frequency sub-band that simultaneously maximises radar performance and reduces the radars spectral footprint. The goal of the investigation presented in this study is to quantify performance improvement of a notional radar model in the presence of RF emissions measured at 2.42 GHz (by a real-time spectrum analyser). In addition to an improved signal-to-interference plus noise ratio, the proposed radar model increases range resolution performance as the target approaches the radar.

Inspec keywords: radar detection; optimisation; spread spectrum communication

Other keywords: radiofrequency emissions; moving targets detection; spectrum sensing-multi-objective optimisation technique; continuous frequency sub-band; adaptable waveform design; frequency 2.42 GHz

Subjects: Optimisation techniques; Radio links and equipment; Signal detection

References

    1. 1)
      • 20. Aubry, A., De Maio, A., Huang, Y., et al: ‘A new radar waveform design algorithm with improved feasibility for spectral coexistence’, IEEE Trans. Aerosp. Electron. Syst., 2015, 51, (2), pp. 10291038.
    2. 2)
      • 28. Martone, A.F., Sherbondy, K.D., Ranney, K.I.: ‘Genetic algorithm for adaptable radar bandwidth’. Proc. 2016 IEEE Radar Conf., Philadelphia, PA, May 2016, pp. 16.
    3. 3)
      • 32. Reigber, A., Ferro-Famil, L.: ‘Interference suppression in synthesized SAR images’, IEEE Geosci. Remote Sens. Lett., 2005, 2, (1), pp. 4549.
    4. 4)
      • 11. US Department of Commerce, National Telecommunications and Information Administration (NTIA): ‘Effects of radar interference on LTE base station receiver performance’, Washington, DC, NTIA Report 14-499, May 2014.
    5. 5)
      • 12. Beatty, W.A.: ‘Proposals for television and broadcasting transmission systems’, J. Br. Inst. Radio Eng., 1945, 5, (2), pp. 5473.
    6. 6)
      • 29. Martone, A.F., Dietlein, C., Govoni, M., et al: ‘Tuning technology for adaptable radar bandwidth’. Proc. 2016 IEEE Int. Microwave Symp. (IMS) Conf., San Francisco, CA, May 2016, pp. 13.
    7. 7)
      • 7. US Department of Commerce, National Telecommunications and Information Administration (NTIA): ‘EMC measurements for spectrum sharing between LTE signals and radar receivers’, Washington, DC, NTIA Report 14-507, July 2014.
    8. 8)
      • 10. Piepmeier, J., Johnson, J.T., Mohammed, P., et al: ‘Radio-frequency interference mitigation for the soil moisture active passive microwave radiometer’, IEEE Trans. Geosci. Remote Sens., 2014, 52, (1), pp. 761775.
    9. 9)
      • 30. Aburdene, M.F., Goodman, T.J.: ‘The discrete Pascal transform and its applications’, IEEE Signal Process. Lett., 2005, 12, (7), pp. 493495.
    10. 10)
      • 19. Jakabosky, J., Ravenscroft, B., Blunt, S.D., et al: ‘Gapped spectrum shaping for tandem-hopped radar/communications & cognitive sensing’. Proc. 2016 IEEE Radar Conf., Philadelphia, PA, May 2016, pp. 16.
    11. 11)
      • 5. Labib, M., Reed, J.H., Martone, A.F., et al: ‘Coexistence between radar and LTE-U systems: survey on the 5 GHz band’. USNC-URSI Radio Science Meeting, Boulder, CO, January 2016, pp. 12.
    12. 12)
      • 9. Tingjun, L., Haining, Y., Zheng-ou, Z.: ‘RFI suppression based on phase-coded stepped-frequency waveform in through-wall radar’, IEEE Trans. Geosci. Remote Sens., 2015, 53, (3), pp. 15831591.
    13. 13)
      • 18. Metcalf, J.G., Sahin, C., Blunt, S.D., et al: ‘Analysis of symbol-design strategies for intrapulse radar-embedded communications’, IEEE Trans. Aerosp. Electron. Syst., 2015, 51, (4), pp. 29142931.
    14. 14)
      • 24. Pelusi, L., Passarella, A., Conti, M.: ‘Opportunistic networking: data forwarding in disconnected mobile ad hoc networks’, IEEE Commun. Mag., 2006, 44, (11), pp. 134141.
    15. 15)
      • 26. Richards, M.A., Scheer, J.A., Holm, W.A.: ‘Principles of modern radar’ (Scitech Publishing., Edison, NJ, 1st edn. 2010).
    16. 16)
      • 31. Martone, A.F., Ranney, K.I., Le, C.: ‘Non-coherent approach for through-the-wall moving target indication’, IEEE Trans. Aerosp. Electron. Syst., 2014, 50, (1), pp. 193206.
    17. 17)
      • 6. Federal Communication Commission: ‘Auction of advanced wireless services (AWS-3) licenses closes’, Washington, DC, FCC DA 15-131, January 2015.
    18. 18)
      • 8. Martone, A.F., Gallagher, K.A., Sherbondy, K.D., et al: ‘Adaptable bandwidth for harmonic step-frequency radar’, Int. J. Antennas Propag., 2015, 53, pp. 115.
    19. 19)
      • 17. Khawar, A., Abdel-Hadi, A., Clancy, T.C.: ‘Spectrum sharing between S-band radar and LTE cellular system: a spatial approach’. IEEE Int. Symp. Dynamic Spectrum Access Networks, Mclean, VA, April 2014, pp. 14.
    20. 20)
      • 16. Saruthirathanaworakun, R., Peha, J.M., Correia, L.M.: ‘Opportunistic primary-secondary spectrum sharing with a rotating radar’. Int. Conf. Computing, Networking and Communications, Maui, HI, January/February 2012, pp. 10251030.
    21. 21)
      • 25. Martone, A.F., Sherbondy, K.D., Ranney, K.I., et al: ‘Passive sensing for adaptable radar bandwidth’. Proc. 2015 IEEE Int. Radar Conf., Arlington, VA, May 2015, pp. 280285.
    22. 22)
      • 23. Wang, B., Liu, K.J.R.: ‘Advances in cognitive radio networks: a survey’, IEEE J. Sel. Top. Signal Process., 2011, 5, (1), pp. 523.
    23. 23)
      • 15. Wang, H., Johnson, J., Baker, C., et al: ‘On spectrum sharing between communications and air traffic control radar systems’. IEEE Int. Radar Conf., Arlington, VA, May 2015, pp. 15451550.
    24. 24)
      • 2. Martone, A.F.: ‘Cognitive radar demystified’, URSI Bull., 2014, 350, pp. 1022.
    25. 25)
      • 1. Griffiths, H., Cohen, L., Watts, S., et al: ‘Radar spectrum engineering and management: technical and regulatory issues’, Proc. IEEE, 2015, 103, (1), pp. 85102.
    26. 26)
      • 21. Mitola, J., Maguire, G.Q.: ‘Cognitive radio: making software radios more personal’, IEEE Pers. Commun., 1999, 6, (4), pp. 1318.
    27. 27)
      • 22. Stinco, P., Greco, M.S., Gini, F.: ‘Spectrum sensing and sharing for cognitive radars’, IET Radar Sonar Navig., 2016, 10, (3), pp. 595602.
    28. 28)
      • 3. Federal Communication Commission: ‘Facilitating opportunities for flexible, efficient, and reliable spectrum use employing cognitive radio technologies’, Washington, DC, FCC 03-322, December 2003.
    29. 29)
      • 27. Mazzaro, G.J., Martone, A.F., McNamara, D.M.: ‘Detection of RF electronics by multitone harmonic radar’, IEEE Trans. Aerosp. Electron. Syst., 2014, 50, (1), pp. 477490.
    30. 30)
      • 13. Peha, J.M.: ‘Sharing spectrum through spectrum policy reform and cognitive radio’, Proc. IEEE, 2009, 97, (4), pp. 708719.
    31. 31)
      • 14. Bhat, S.S., Narayanan, R.M., Rangaswamy, M.: ‘Bandwidth sharing and scan scheduling in multimodal radar with communications and tracking’, IETE J. Res., 2013, 59, (5), pp. 551562.
    32. 32)
      • 4. Federal Communication Commission: ‘Amendment of the commission's rules with regard to commercial operations in the 3550–3650 MHz band’, Washington, DC, FCC 15-47, April 2015.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2017.0125
Loading

Related content

content/journals/10.1049/iet-rsn.2017.0125
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading