access icon free Ambiguities in 3D target motion estimation for general radar measurements

A recent analysis reveals that any attempt to estimate the underlying two-dimensional (2D) motion of a surface target via general bistatic synthetic aperture radar yields ambiguities, so that alternate target trajectories can give the same measurement data. These ambiguities are of a continuous nature and are fundamentally distinct from the discrete ambiguities that arise in pulse-Doppler moving target indication radar. The current investigation relaxes the constraint that the mobile target lies on the surface of a ground plane, so that air targets with general 3D motion are considered. Specifically, the current paper develops methods for constructing alternate fictitious 3D target trajectory and speed profiles in time which yield identical radar measurements as that obtained from the true 3D target motion. These ambiguities are shown to remain even with the inclusion of bistatic range rate or Doppler measurements. Thus, the energy patterns of the radar transmission and reception beams determine the ability to localise and estimate the 3D target trajectory and speed profiles for general bistatic radar collections.

Inspec keywords: Doppler radar; synthetic aperture radar; motion estimation

Other keywords: radar transmission; energy patterns; speed profiles; two-dimensional motion estimation; general 3D motion; discrete ambiguities; reception beams; general bistatic synthetic aperture radar; general bistatic radar collections; pulse-Doppler moving target indication radar; fictitious 3D target trajectory; Doppler measurements; measurement data; 3D target motion estimation; bistatic range rate; general radar measurements; ground plane

Subjects: Radar equipment, systems and applications; Optical, image and video signal processing

References

    1. 1)
      • 39. Minardi, M.J., Zelnio, E.G.: ‘Comparison of SAR based GMTI and standard GMTI in a dense target environment’. Proc. SPIE, Vol 6237, Algorithms for Synthetic Aperture Radar Imagery XIII, 17 May 2006, in Orlando, FL, USA, 2006, vol. 6237, pp. 62370X1–62370X–10.
    2. 2)
      • 35. Garren, D.A.: ‘Signature morphology effects of squint angle for arbitrarily moving surface targets in spotlight synthetic aperture radar’, IEEE Trans. Geosci. Remote Sens., 2015, 53, (11), pp. 62416251, Date of Publication to IEEE Xplore as an Early Access Article: 29 June 2015.
    3. 3)
      • 30. Garren, D.A.: ‘Signatures of braking surface targets in spotlight synthetic aperture radar’, Proc. 2014 Sensor Signal Processing for Defence, held in Edinburgh, UK, on 08–09 September 2014, 2014, pp. 5155.
    4. 4)
      • 31. Garren, D.A.: ‘Signature predictions of surface targets undergoing turning maneuvers in spotlight synthetic aperture radar imagery’. Proc. SPIE, Vol 9475, 94750A, Algorithms for Synthetic Aperture Radar Imagery XXII, 20–24 April 2015, in Baltimore, MD, USA, 2015, pp. 49975008.
    5. 5)
      • 38. Scarborough, S., Lemanski, C., Nichols, H., et al: ‘SAR change detection MTI’. Proc. SPIE, Vol 6237, Algorithms for Synthetic Aperture Radar Imagery XIII, 17 May 2006, in Orlando, FL, USA, 2006, vol. 6237, pp. 62370V1–62370V–11.
    6. 6)
      • 25. Barbarossa, S., Farina, A.: ‘Detection and imaging of moving objects with synthetic aperture radar – part 2: joint time-frequency analysis by Wigner–Ville distribution’, IEE Proc. F, 1992, 139, (1), pp. 8997.
    7. 7)
      • 1. Raney, R.K.: ‘Synthetic aperture imaging radar and moving targets’, IEEE Trans. Aerosp. Electron. Syst., 1971, 7, (3), pp. 499505.
    8. 8)
      • 24. Barbarossa, S.: ‘Detection and imaging of moving objects with synthetic aperture radar – part 1: optimal detection and parameter estimation theory’, IEE Proc. F, 1992, 139, (1), pp. 7988.
    9. 9)
      • 20. Mao, X.Z., Zhu, Z.D.D.Y.: ‘Signatures of moving target in polar format spotlight SAR image’, Prog. Electromagn. Res., 2009, 92, pp. 4764.
    10. 10)
      • 10. Fasih, A.R., Ertin, E., Ash, J.N., et al: ‘SAR focusing performance for moving objects with random motion components’. 2008 ACSSC 42nd Asilomar Conf. Signals, Systems and Computers, October 2008, 2008, pp. 16281632.
    11. 11)
      • 26. Kirscht, M.: ‘Detection and imaging of arbitrarily moving targets with single-channel SAR’, IEE Proc., Radar Sonar Navig., 2003, 150, (1), pp. 711.
    12. 12)
      • 36. Garren, D.A.: ‘SAR ground-plane mover signatures for non-zero radar ascent’, IEEE Trans. Aerosp. Electron. Syst., 2017, Date of Publication to IEEE Xplore as an Early Access Article: 29 March 2017.
    13. 13)
      • 23. Barbarossa, S., Farina, A.: ‘A novel procedure for detecting and focusing moving objects with SAR based on the Wigner–Ville distribution’. IEEE Int. Radar Conf., 1990, p. 44.
    14. 14)
      • 11. Zhu, S., Liao, G., Qu, Y., et al: ‘Ground moving targets imaging algorithm for synthetic aperture radar’, IEEE Trans. Geosci. Remote Sens., 2011, 49, (1), pp. 462477.
    15. 15)
      • 5. Jakowatz, Jr.C.V., Wahl, D.E., Eichel, P.H.: ‘Refocus of constant velocity moving targets in synthetic aperture radar imagery’. Proc. SPIE: Algorithms Synth. Aperture Rad. Imagery V, Edmund G Zelnio, Editor, 1998, 3370, pp. 8595.
    16. 16)
      • 17. DiPietro, R.C., Fante, R.L., Perry, R.P.: ‘Space-based bistatic GMTI using low resolution SAR’. IEEE Aerospace Conf. 1997, 1997, 2, pp. 181193.
    17. 17)
      • 16. Deng, B., Qin, Y., Wang, H., et al: ‘An efficient mathematical description of range models for high-order-motion targets in synthetic aperture radar’. Proc. 2012 IEEE Radar Conf. held 7–11 May 2012 in Atlanta, GA, 2012, pp. 610.
    18. 18)
      • 32. Garren, D.A.: ‘Signatures of surface targets with increasing speed in spotlight synthetic aperture radar’. 2015 IEEE Int. Radar Conf., 11–15 May 2015 in Arlington, Virginia, USA, 2015, pp. 11141118.
    19. 19)
      • 40. Holston, M.E., Minardi, M.J., Temple, M.A., et al: ‘Characterizing geolocation ambiguity responses in synthetic aperture radar: ground moving target indication’. Proc. SPIE, Vol 6568, Algorithms for Synthetic Aperture Radar Imagery XIV, 7 May 2007, in Orlando, FL, USA, 2007, vol. 6568, pp. 656809656809–11.
    20. 20)
      • 7. Vu, V.T.S., Pettersson, T.K., Gustavsson, M.I., et al: ‘Detection of moving targets by focusing in UWB SAR – theory and experimental results’, IEEE Trans. Geosci. Remote Sens., 2010, 48, (10), p. 3799.
    21. 21)
      • 42. Garren, D.A.: ‘Ambiguities in target motion estimation for general SAR measurements’, IET Radar Sonar Navig., 2016, 10, (9), pp. 17201728, Date of Publication as an IET E-First article: 28 April 2016.
    22. 22)
      • 3. Fienup, J.R.: ‘Detecting moving targets in SAR imagery by focusing’, IEEE Trans. Aerosp. Electron. Syst., 2001, 37, (3), pp. 794809.
    23. 23)
      • 41. Newstadt, G.E., Zelnio, E.G., Gorham, L., et al: ‘Detection/tracking of moving targets with synthetic aperture radars’. Proc. SPIE, Vol 7699, Algorithms for Synthetic Aperture Radar Imagery XVII, 5 April 2010, in Orlando, FL, USA, 2010, vol. 7699, pp. 7699DI1–7699DI–10.
    24. 24)
      • 15. Li, X., Deng, B., Qin, Y., et al: ‘The influence of target micromotion on SAR and GMTI’, IEEE Trans. Geosci. Remote Sens., 2011, 49, (7), pp. 27382751.
    25. 25)
      • 28. Marques, P.A.C., Dias, J.M.B.: ‘Moving targets processing in SAR spatial domain’, IEEE Trans. Aerosp. Electron. Syst., 2007, 43, (3), pp. 864874.
    26. 26)
      • 33. Duman, K., Yazici, B.: ‘Moving target artifacts in bistatic synthetic aperture radar images’, IEEE Trans. Comput. Imaging, 2015, 1, (1), pp. 3043.
    27. 27)
      • 21. Mao, X., Zhu, D., Wang, L., et al: ‘Response of polar format algorithm to moving target with consideration of wavefront curvature’. 2009 IEEE Radar Conf., Pasadena, CA, 2009.
    28. 28)
      • 14. Yake, L., Yanfei, W., Chang, L.: ‘Detect and autofocus the moving target by its range walk in time domain’, International Conference on Wireless Communications and Signal Processing (WCSP), 2011DOI: 10.1109/WCSP.2011.6096755.
    29. 29)
      • 37. Minardi, M.J., Gorham, L.A., Zelnio, E.G.: ‘Ground moving target detection and tracking based on generalized SAR processing and change detection’. Proc. SPIE, Vol. 5808, Algorithms for Synthetic Aperture Radar Imagery XII, 14 June 2005, in Orlando, FL, USA, 2005, vol. 5808, pp. 156165.
    30. 30)
      • 2. Perry, R.P., DiPietro, R.C., Fante, R.L.: ‘SAR imaging of moving targets’, IEEE Trans. Aerosp. Electron. Syst., 1999, 35, (1), pp. 188200.
    31. 31)
      • 27. Dias, J.M.B., Marques, P.A.C.: ‘Multiple moving target detection and trajectory estimation using a single SAR sensor’, IEEE Trans. Aerosp. Electron. Syst., 2003, 39, (2), pp. 604624.
    32. 32)
      • 34. Garren, D.A.: ‘Theory of two-dimensional signature morphology for arbitrarily moving surface targets in squinted spotlight synthetic aperture radar’, IEEE Trans. Geosci. Remote Sens., 2015, 53, (9), pp. 49975008, Date of Publication to IEEE Xplore as an Early Access Article: 17 April 2015.
    33. 33)
      • 18. Jao, J.K.: ‘Theory of synthetic aperture radar imaging of a moving target’, IEEE Trans. Geosci. Remote Sens., 2001, 39, (9), pp. 19841992.
    34. 34)
      • 6. Rigling, B.D.: ‘Image-quality focusing of rotating SAR targets’, IEEE Geosci. Remote Sens. Lett., 2008, 5, (4), pp. 750754.
    35. 35)
      • 22. Linnehan, R., Perlovsky, L., Mutz, C., et al: ‘Detecting slow moving targets in SAR images’. Proc. SPIE 5410, Radar Sensor Technology VIII and Passive Millimeter-Wave Imaging Technology VII, 64 (August 12, 2004), Orlando, Florida, USA, 2004, p. 64.
    36. 36)
      • 12. Cheney, M., Borden, B.: ‘Waveform-diverse moving-target spotlight SAR’, Proc. 2010 Int. Waveform Diversity and Design Conf. held 8–13 August 2010 in Niagara Falls, Canada, 2010, pp. 3334.
    37. 37)
      • 19. David, A.G.: ‘Method and system for developing and using an image reconstruction algorithm for detecting and imaging moving targets – U.S. Patent 7456780 B1’. US 7456780 B1, 2008.
    38. 38)
      • 9. Leducq, P., Ferro-Famil, L., Pottier, E.: ‘Matching-pursuit-based analysis of moving objects in polarimetric SAR images’, IEEE Geosci. Remote Sens. Lett., 2008, 5, (2), pp. 123127.
    39. 39)
      • 13. Xu, J., Zuo, Y., Xia, B., et al: ‘Ground moving target signal analysis in complex image domain for multichannel SAR’, IEEE Trans. Geosci. Remote Sens., 2012, 50, (2), pp. 538552.
    40. 40)
      • 4. Cristallini, D., Pastina, D., Colone, F., et al: ‘Efficient detection and imaging of moving targets in SAR images based on chirp scaling’, IEEE Trans. Geosci. Remote Sens., 2013, 51, (4), pp. 24032416.
    41. 41)
      • 8. Stojanovic, I., Karl, W.C.: ‘Imaging of moving targets with multi-static SAR using an overcomplete dictionary’, IEEE J. Sel. Top. Signal Process., 2010, 4, (1), pp. 164176.
    42. 42)
      • 29. Garren, D.A.: ‘Smear signature morphology of surface targets with arbitrary motion in spotlight synthetic aperture radar imagery’, IET Radar Sonar Navig., 2014, 8, (5), pp. 435448, Date of Publication as an IET E-First article: 06 January 2014.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2017.0063
Loading

Related content

content/journals/10.1049/iet-rsn.2017.0063
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading