http://iet.metastore.ingenta.com
1887

Low angle estimation in diffuse multipath environment by time-reversal minimum-norm-like technique

Low angle estimation in diffuse multipath environment by time-reversal minimum-norm-like technique

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Radar, Sonar & Navigation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a novel method for low angle estimation in diffuse multipath environment by the time-reversal (TR) minimum-norm-like (MNL) technique. In recent studies, the diffuse multipath is always regarded as the interference which is tried to be eliminated or weakened in low angle estimation for very high-frequency radar. However, it is difficult to establish the accurate model of the multipath environment. The common methods usually ignore the diffuse multipath and use the mirror reflection as the approximate model, but the ideal assumption would cause great errors. The proposed method makes the radar array working in the TR setup and the MNL technique is applied to estimate the low angle. In the proposed method, the exact model of the multipath environment does not need to be established completely but the accuracy performance of low angle estimation can be improved by making use of the multipath. Simulation results are presented to demonstrate the effectiveness of the proposed method. In addition, the performance degradation with respect to target motion is also shown in simulation results.

References

    1. 1)
      • I. Balajti , G. Kende , E. Sinner .
        1. Balajti, I., Kende, G., Sinner, E.: ‘Increased importance of VHF radars in ground-based air defense’, IEEE Aerosp. Electron. Syst. Mag., 2012, 27, (1), pp. 418.
        . IEEE Aerosp. Electron. Syst. Mag. , 1 , 4 - 18
    2. 2)
      • T.J. Shan , M. Wax , T. Kailath .
        2. Shan, T.J., Wax, M., Kailath, T.: ‘On spatial smoothing for direction-of-arrival estimation of coherent signals’, IEEE Trans. Acoust. Speech Signal Process., 1985, 33, (4), pp. 806811.
        . IEEE Trans. Acoust. Speech Signal Process. , 4 , 806 - 811
    3. 3)
      • T. Lo , J. Litva .
        3. Lo, T., Litva, J.: ‘Use of a highly deterministic multipath signal model in low-angle tracking’, IEE Proc. F, Radar Signal Process., 1991, 138, (2), pp. 163171.
        . IEE Proc. F, Radar Signal Process. , 2 , 163 - 171
    4. 4)
      • E. Bosse , R.M. Turner , M. Lecours .
        4. Bosse, E., Turner, R.M., Lecours, M.: ‘Tracking swerling fluctuating targets at low altitude over the sea’, IEEE Trans. Aerosp. Electron. Syst., 1991, 27, (5), pp. 806822.
        . IEEE Trans. Aerosp. Electron. Syst. , 5 , 806 - 822
    5. 5)
      • S. Wang , Y. Cao , H. Su .
        5. Wang, S., Cao, Y., Su, H., et al: ‘Target and reflecting surface height joint estimation in low-angle radar’, IET Radar Sonar Navig., 2016, 10, (3), pp. 617623.
        . IET Radar Sonar Navig. , 3 , 617 - 623
    6. 6)
      • D. Park , E. Yang , S. Ahn .
        6. Park, D., Yang, E., Ahn, S.: ‘Adaptive beamforming for low-angle target tracking under multipath interference’, IEEE Trans. Aerosp. Electron. Syst., 2014, 50, (4), pp. 25642577.
        . IEEE Trans. Aerosp. Electron. Syst. , 4 , 2564 - 2577
    7. 7)
      • M.A. Sebt , A. Sheikhi , M.M. Nayebi .
        7. Sebt, M.A., Sheikhi, A., Nayebi, M.M.: ‘Robust low-angle estimation by an array radar’, IET Radar Sonar Navig., 2010, 4, (6), pp. 780790.
        . IET Radar Sonar Navig. , 6 , 780 - 790
    8. 8)
      • B. Chen , G. Zhao , S. Zhang .
        8. Chen, B., Zhao, G., Zhang, S.: ‘Altitude measurement based on beam split and frequency diversity in VHF radar’, IEEE Trans. Aerosp. Electron. Syst., 2010, 46, (1), pp. 313.
        . IEEE Trans. Aerosp. Electron. Syst. , 1 , 3 - 13
    9. 9)
      • W. Zhu , B. Chen .
        9. Zhu, W., Chen, B.: ‘Altitude measurement based on terrain matching in VHF array radar’, Circuits Syst. Signal Process., 2013, 32, (2), pp. 647662.
        . Circuits Syst. Signal Process. , 2 , 647 - 662
    10. 10)
      • Y. Zheng , B. Chen .
        10. Zheng, Y., Chen, B.: ‘Altitude measurement of low-angle target in complex terrain for very high-frequency radar’, IET Radar Sonar Navig., 2015, 9, (8), pp. 967973.
        . IET Radar Sonar Navig. , 8 , 967 - 973
    11. 11)
      • M. Fink .
        11. Fink, M.: ‘Time reversal of ultrasonic fields – Part I: basic principles’, IEEE Trans. Ultrason., Ferroelectr. Freq. Control, 1992, 39, (5), pp. 555566.
        . IEEE Trans. Ultrason., Ferroelectr. Freq. Control , 5 , 555 - 566
    12. 12)
      • P. Blomgren , G.C. Papanicolaou , H. Zhao .
        12. Blomgren, P., Papanicolaou, G.C., Zhao, H.: ‘Super-resolution in time-reversal acoustics’, J. Acoust. Soc. Am., 2001, 111, pp. 230248.
        . J. Acoust. Soc. Am. , 230 - 248
    13. 13)
      • C. Tsogka , G.C. Papanicolaou .
        13. Tsogka, C., Papanicolaou, G.C.: ‘Time reversal through a solid–liquid interface and super-resolution’, Inv. Probl., 2002, 18, (6), pp. 16391657.
        . Inv. Probl. , 6 , 1639 - 1657
    14. 14)
      • Y. Jin , J. Moura .
        14. Jin, Y., Moura, J.: ‘Time reversal detection using antenna arrays’, IEEE Trans. Signal Process., 2009, 57, (4), pp. 13961414.
        . IEEE Trans. Signal Process. , 4 , 1396 - 1414
    15. 15)
      • F. Foroozan , A. Asif .
        15. Foroozan, F., Asif, A.: ‘Cramer-Rao bound for time reversal active array direction of arrival estimators in multipath environments’. Proc. Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), Dallas, America, March 2010, pp. 26462649.
        . Proc. Int. Conf. Acoustics, Speech and Signal Processing (ICASSP) , 2646 - 2649
    16. 16)
      • F. Foroozan , A. Asif .
        16. Foroozan, F., Asif, A.: ‘Time reversal ground penetrating radar: range estimation with Cramer Rao lower bound’, IEEE Trans. Geosci. Remote Sens., 2010, 48, (10), pp. 36983708.
        . IEEE Trans. Geosci. Remote Sens. , 10 , 3698 - 3708
    17. 17)
      • F. Foroozan , A. Asif .
        17. Foroozan, F., Asif, A.: ‘Time reversal based active array source localization’, IEEE Trans. Signal Process., 2011, 59, (6), pp. 26552668.
        . IEEE Trans. Signal Process. , 6 , 2655 - 2668
    18. 18)
      • F. Foroozan , A. Asif , R. Boyer .
        18. Foroozan, F., Asif, A., Boyer, R.: ‘Angular resolution limit for the time reversal MIMO radar’. Proc. Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), Vancouver, Canada, May 2013, pp. 41254129.
        . Proc. Int. Conf. Acoustics, Speech and Signal Processing (ICASSP) , 4125 - 4129
    19. 19)
      • M.H.S. Sajjadieh , A. Asif .
        19. Sajjadieh, M.H.S., Asif, A.: ‘Compressive sensing time reversal MIMO radar: joint direction and Doppler frequency estimation’, IEEE Signal Process. Lett., 2015, 22, (9), pp. 12831287.
        . IEEE Signal Process. Lett. , 9 , 1283 - 1287
    20. 20)
      • M.H.S. Sajjadieh , A. Asif .
        20. Sajjadieh, M.H.S., Asif, A.: ‘Joint time reversal and compressive sensing based localization algorithms for multiple-input multiple-output radar’. Proc. Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), Brisbane, Australia, April 2015, pp. 23542358.
        . Proc. Int. Conf. Acoustics, Speech and Signal Processing (ICASSP) , 2354 - 2358
    21. 21)
      • D. Ciuonzo , G. Romano , R. Solimene .
        21. Ciuonzo, D., Romano, G., Solimene, R.: ‘Performance analysis of time-reversal MUSIC’, IEEE Trans. Signal Process., 2015, 63, (10), pp. 26502662.
        . IEEE Trans. Signal Process. , 10 , 2650 - 2662
    22. 22)
      • A. Aubry , A.D. Maio , G. Foglia .
        22. Aubry, A., Maio, A.D., Foglia, G., et al: ‘Diffuse multipath exploitation for adaptive radar detection’, IEEE Trans. Signal Process., 2015, 63, (5), pp. 12681281.
        . IEEE Trans. Signal Process. , 5 , 1268 - 1281
    23. 23)
      • C. Niu , Y. Zhang , J. Guo .
        23. Niu, C., Zhang, Y., Guo, J.: ‘Interlaced double-precision 2-D angle estimation algorithm using L-shaped nested arrays’, IEEE Signal Process. Lett., 2016, 23, (3), pp. 522526.
        . IEEE Signal Process. Lett. , 3 , 522 - 526
    24. 24)
      • V.V. Reddy , M. Mubeen , B.P. Ng .
        24. Reddy, V.V., Mubeen, M., Ng, B.P.: ‘Reduced-complexity super-resolution DOA estimation with unknown number of sources’, IEEE Signal Process. Lett., 2015, 22, (6), pp. 772776.
        . IEEE Signal Process. Lett. , 6 , 772 - 776
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2017.0015
Loading

Related content

content/journals/10.1049/iet-rsn.2017.0015
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address