access icon free Low angle estimation in diffuse multipath environment by time-reversal minimum-norm-like technique

This study presents a novel method for low angle estimation in diffuse multipath environment by the time-reversal (TR) minimum-norm-like (MNL) technique. In recent studies, the diffuse multipath is always regarded as the interference which is tried to be eliminated or weakened in low angle estimation for very high-frequency radar. However, it is difficult to establish the accurate model of the multipath environment. The common methods usually ignore the diffuse multipath and use the mirror reflection as the approximate model, but the ideal assumption would cause great errors. The proposed method makes the radar array working in the TR setup and the MNL technique is applied to estimate the low angle. In the proposed method, the exact model of the multipath environment does not need to be established completely but the accuracy performance of low angle estimation can be improved by making use of the multipath. Simulation results are presented to demonstrate the effectiveness of the proposed method. In addition, the performance degradation with respect to target motion is also shown in simulation results.

Inspec keywords: radar signal processing; radar interference; approximation theory; array signal processing; interference suppression

Other keywords: diffuse multipath environment; mirror reflection; interference elimination; very high-frequency radar array signal processing; time-reversal minimum-norm-like technique; approximate model; low angle estimation; TR MNL technique

Subjects: Radar theory; Interpolation and function approximation (numerical analysis); Signal processing and detection; Electromagnetic compatibility and interference

References

    1. 1)
      • 1. Balajti, I., Kende, G., Sinner, E.: ‘Increased importance of VHF radars in ground-based air defense’, IEEE Aerosp. Electron. Syst. Mag., 2012, 27, (1), pp. 418.
    2. 2)
      • 16. Foroozan, F., Asif, A.: ‘Time reversal ground penetrating radar: range estimation with Cramer Rao lower bound’, IEEE Trans. Geosci. Remote Sens., 2010, 48, (10), pp. 36983708.
    3. 3)
      • 3. Lo, T., Litva, J.: ‘Use of a highly deterministic multipath signal model in low-angle tracking’, IEE Proc. F, Radar Signal Process., 1991, 138, (2), pp. 163171.
    4. 4)
      • 11. Fink, M.: ‘Time reversal of ultrasonic fields – Part I: basic principles’, IEEE Trans. Ultrason., Ferroelectr. Freq. Control, 1992, 39, (5), pp. 555566.
    5. 5)
      • 14. Jin, Y., Moura, J.: ‘Time reversal detection using antenna arrays’, IEEE Trans. Signal Process., 2009, 57, (4), pp. 13961414.
    6. 6)
      • 21. Ciuonzo, D., Romano, G., Solimene, R.: ‘Performance analysis of time-reversal MUSIC’, IEEE Trans. Signal Process., 2015, 63, (10), pp. 26502662.
    7. 7)
      • 10. Zheng, Y., Chen, B.: ‘Altitude measurement of low-angle target in complex terrain for very high-frequency radar’, IET Radar Sonar Navig., 2015, 9, (8), pp. 967973.
    8. 8)
      • 19. Sajjadieh, M.H.S., Asif, A.: ‘Compressive sensing time reversal MIMO radar: joint direction and Doppler frequency estimation’, IEEE Signal Process. Lett., 2015, 22, (9), pp. 12831287.
    9. 9)
      • 9. Zhu, W., Chen, B.: ‘Altitude measurement based on terrain matching in VHF array radar’, Circuits Syst. Signal Process., 2013, 32, (2), pp. 647662.
    10. 10)
      • 22. Aubry, A., Maio, A.D., Foglia, G., et al: ‘Diffuse multipath exploitation for adaptive radar detection’, IEEE Trans. Signal Process., 2015, 63, (5), pp. 12681281.
    11. 11)
      • 17. Foroozan, F., Asif, A.: ‘Time reversal based active array source localization’, IEEE Trans. Signal Process., 2011, 59, (6), pp. 26552668.
    12. 12)
      • 13. Tsogka, C., Papanicolaou, G.C.: ‘Time reversal through a solid–liquid interface and super-resolution’, Inv. Probl., 2002, 18, (6), pp. 16391657.
    13. 13)
      • 12. Blomgren, P., Papanicolaou, G.C., Zhao, H.: ‘Super-resolution in time-reversal acoustics’, J. Acoust. Soc. Am., 2001, 111, pp. 230248.
    14. 14)
      • 6. Park, D., Yang, E., Ahn, S.: ‘Adaptive beamforming for low-angle target tracking under multipath interference’, IEEE Trans. Aerosp. Electron. Syst., 2014, 50, (4), pp. 25642577.
    15. 15)
      • 7. Sebt, M.A., Sheikhi, A., Nayebi, M.M.: ‘Robust low-angle estimation by an array radar’, IET Radar Sonar Navig., 2010, 4, (6), pp. 780790.
    16. 16)
      • 18. Foroozan, F., Asif, A., Boyer, R.: ‘Angular resolution limit for the time reversal MIMO radar’. Proc. Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), Vancouver, Canada, May 2013, pp. 41254129.
    17. 17)
      • 15. Foroozan, F., Asif, A.: ‘Cramer-Rao bound for time reversal active array direction of arrival estimators in multipath environments’. Proc. Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), Dallas, America, March 2010, pp. 26462649.
    18. 18)
      • 8. Chen, B., Zhao, G., Zhang, S.: ‘Altitude measurement based on beam split and frequency diversity in VHF radar’, IEEE Trans. Aerosp. Electron. Syst., 2010, 46, (1), pp. 313.
    19. 19)
      • 20. Sajjadieh, M.H.S., Asif, A.: ‘Joint time reversal and compressive sensing based localization algorithms for multiple-input multiple-output radar’. Proc. Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), Brisbane, Australia, April 2015, pp. 23542358.
    20. 20)
      • 5. Wang, S., Cao, Y., Su, H., et al: ‘Target and reflecting surface height joint estimation in low-angle radar’, IET Radar Sonar Navig., 2016, 10, (3), pp. 617623.
    21. 21)
      • 4. Bosse, E., Turner, R.M., Lecours, M.: ‘Tracking swerling fluctuating targets at low altitude over the sea’, IEEE Trans. Aerosp. Electron. Syst., 1991, 27, (5), pp. 806822.
    22. 22)
      • 2. Shan, T.J., Wax, M., Kailath, T.: ‘On spatial smoothing for direction-of-arrival estimation of coherent signals’, IEEE Trans. Acoust. Speech Signal Process., 1985, 33, (4), pp. 806811.
    23. 23)
      • 23. Niu, C., Zhang, Y., Guo, J.: ‘Interlaced double-precision 2-D angle estimation algorithm using L-shaped nested arrays’, IEEE Signal Process. Lett., 2016, 23, (3), pp. 522526.
    24. 24)
      • 24. Reddy, V.V., Mubeen, M., Ng, B.P.: ‘Reduced-complexity super-resolution DOA estimation with unknown number of sources’, IEEE Signal Process. Lett., 2015, 22, (6), pp. 772776.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2017.0015
Loading

Related content

content/journals/10.1049/iet-rsn.2017.0015
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading