Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Time-varying three-dimensional interferometric imaging for space rotating targets with stepped-frequency chirp signal

Three-dimensional (3D) radar imaging can provide abundant information about space targets, thus playing a significant role in space target recognition, measurement and cataloguing. In this study, a time-varying interferometric 3D imaging method for space rotating targets is proposed based on stepped-frequency chirp signal. In this study, with L-shaped three-antenna configuration, the interferometric signal model is first set up and high-resolution range profile (HRRP) series of the three antennas are obtained. Then through interferometric processing of HRRP series on different interferometric planes, the instantaneous spatial positions in the azimuth and pitching directions of each target scatterer are reconstructed. Combining with the instantaneous positions in range direction extracted from HRRP series, the time-varying 3D image of target can be reconstructed accordingly. Compared to existing 3D imaging method for space rotating targets, the proposed method can obtain real time-varying 3D image of target with one multi-antenna set radar. Simulation results verify the validity and robustness of the proposed method.

References

    1. 1)
      • 13. Bai, X.R., Sun, G.C., Wu, Q.S., et al: ‘Narrow-band radar imaging of spinning targets’, Sci. Chin. (Inf. Sci.), 2011, 54, (4), pp. 873883.
    2. 2)
      • 5. Wang, Q., Xing, M., Lu, G., et al: ‘High-resolution three-dimensional radar imaging for rapidly spinning targets’, IEEE Trans. Geosci. Remote Sens., 2008, 46, (1), pp. 2230.
    3. 3)
      • 17. Liu, Y.B., Li, N., Wang, R., et al: ‘Achieving high-quality three-dimensional InISAR imageries of maneuvering target via super-resolution ISAR imaging by exploiting sparseness’, IEEE Geosci. Remote Sens. Lett., 2014, 11, (4), pp. 828832.
    4. 4)
      • 20. Sun, L., Wang, T.Y., Fei, L.X., et al: ‘ISAR imaging for micromotion targets using the hierarchical Bayesian prior’. 2015 IEEE 5th Asia-Pacific Conf. Synthetic Aperture Radar (APSAR), pp. 545549.
    5. 5)
      • 2. Sato, T.: ‘Shape estimation of space debris using single-range Doppler interferometry’, IEEE Trans. Geosci. Remote Sens., 1999, 37, (2), pp. 10001005.
    6. 6)
      • 1. Luo, Y., Zhang, Q., Yuan, N., et al: ‘Three-dimensional precession feature extraction of space targets’, IEEE Trans. Aerosp. Electron. Syst., 2014, 50, (2), pp. 13131329.
    7. 7)
      • 9. Sun, Y.X., Ma, C.Z., Luo, Y., et al: ‘An interferometric-processing based three-dimensional imaging method for space rotating targets’. IET Int. Radar Conf. 2016, Guangzhou, China, October 2016, pp. 398402.
    8. 8)
      • 19. Xia, P., Wan, X.R., Yi, J.X., et al: ‘Micro-Doppler imaging for fast rotating targets using illuminators of opportunity’, IET Radar Sonar Navig., 2016, 10, (6), pp. 10241029.
    9. 9)
      • 16. Ma, C.Z., Yeo, T.S., Zhang, Q., et al: ‘Three-dimensional ISAR imaging based on antenna array’, IEEE Trans. Geosci. Remote Sens., 2008, 46, (2), pp. 504515.
    10. 10)
      • 15. Zhang, Q., Yeo, T.S., Luo, Y.: ‘Imaging of a moving target with rotating parts based on the Hough transform’, IEEE Trans. Geosci. Remote Sens., 2008, 46, (1), pp. 291299.
    11. 11)
      • 18. Chen, C.H., Zhang, L., Luo, Y., et al: ‘An ISAR imaging algorithm for micro-motion targets with sparse aperture’. IET Int. Radar Conf., October 2015, pp. 15.
    12. 12)
      • 11. Chen, V.C., Li, F., Ho, S.S., et al: ‘Micro-Doppler effect in radar: phenomenon, model, and simulation study’, IEEE Trans. Aerosp. Electron. Syst., 2006, 42, (1), pp. 221.
    13. 13)
      • 10. Chen, V.C.: ‘Reconstruction of inverse synthetic aperture radar image using adaptive time–frequency wavelet transforms’. Proc. SPIE Wavelet Applicant for Dual Use, Orlando, FL, 1995, vol. 2491, pp. 373386.
    14. 14)
      • 14. Wang, F., Eibert, T.F., Jin, Y.Q.: ‘Simulation of ISAR imaging for a space target and reconstruction under sparse sampling via compressed sensing’, IEEE Trans. Geosci. Remote Sens., 2015, 53, (6), pp. 34323441.
    15. 15)
      • 7. Ai, X.F., Huang, Y., Zhao, F., et al: ‘Imaging of spinning targets via narrow-band T/R-R bistatic radars’, IEEE Geosci. Remote Sens. Lett., 2013, 10, (2), pp. 362366.
    16. 16)
      • 6. Bai, X.R., Xing, M.D., Zhou, F., et al: ‘High-resolution three-dimensional imaging of spinning space debris’, IEEE Trans. Geosci. Remote Sens., 2009, 47, (4), pp. 23522362.
    17. 17)
      • 22. Zhao, Y.Q., Wang, G.Z., Bai, Y.Q., et al: ‘A new method of translational compensation for space spinning target based on EMD’. IEEE Int. Conf. Signal Processing, Communication and Computing (ICSPCC), November 2013, pp. 15.
    18. 18)
      • 23. Ioana, C., I. Mars, J., Serbanescu, A., et al: ‘Time-frequency-phase tracking approach: application to underwater signals in a passive context’. 2010 IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), 2010, pp. 56345637.
    19. 19)
      • 21. Zhang, Q., Yeo, T.S., Du, G., et al: ‘Estimation of three-dimensional motion parameters in interferometric ISAR imaging’, IEEE Trans. Geosci. Remote Sens., 2004, 42, (2), pp. 292300.
    20. 20)
      • 4. Zhang, L., Xing, M.D., Qiu, C.W., et al: ‘Two-dimensional spectrum matched filter banks for high-speed spinning-target three-dimensional IASR imaging’, IEEE Geosci. Remote Sens. Lett., 2009, 6, (3), pp. 368372.
    21. 21)
      • 3. Cao, X., Su, F., Sun, H., et al: ‘Space debris observation via space-based ISAR imaging’. Int. Conf. Microwave and Millimeter Wave Technology (ICMMT ‘07), Guilin, China, April 2007, pp. 15.
    22. 22)
      • 12. Li, G., Varshney, P.K.: ‘Micro-Doppler parameter estimation via parametric sparse representation and pruned orthogonal matching pursuit’, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2014, 7, (12), pp. 49374948.
    23. 23)
      • 8. Luo, Y., Zhang, Q., Qiu, C.W., et al: ‘Three-dimensional micromotion signature extraction of rotating targets in OFDM-LFM MIMO radar’, Prog. Electromagn. Res., 2013, 140, (2), pp. 13131329.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2017.0009
Loading

Related content

content/journals/10.1049/iet-rsn.2017.0009
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address