Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Radar emitter classification for large data set based on weighted-xgboost

Radar emitter classification (REC) is very important in both civil and military fields. It becomes more and more difficult to classify the intercepted radar signals with the increasing complexity of radar signals. An efficient classification method using weighted-xgboost (w-xgboost) model for the complex radar signals is proposed in this study. The xgboost method is widely used by data scientists and performs very well in many machine learning projects. The authors use a large data set which consists of different types of attributes (such as continuous data, categorical data, and discrete data) to train the model. A smooth weight function is introduced to solve the data deviation problem. Experiment results show that the authors’ w-xgboost method achieves a better performance than several existing machine learning algorithms on the test set.

References

    1. 1)
      • 24. Li, L., Ji, H.B., Jiang, L.: ‘Quadratic time-frequency analysis and sequential recognition for specific emitter identification’, IET Signal Process., 2011, 5, (6), pp. 568574.
    2. 2)
      • 2. Spezio, A.E.: ‘Electronic warfare systems’, IEEE Trans. Microw. Theory Tech., 2002, 50, (3), pp. 633644.
    3. 3)
      • 22. Burges, C.J.: ‘From ranknet to lambdarank to lambdamart: an overview’, Learning, 2010, 11, pp. 23581.
    4. 4)
      • 8. Dudczyk, J.: ‘Radar emission sources identification based on hierarchical agglomerative clustering for large data sets’, J. Sens., 2016, 2016, pp. 19.
    5. 5)
      • 15. Hinton, G.E., Salakhutdinov, R.R.: ‘Reducing the dimensionality of data with neural networks’, Science, 2006, 313, (5786), pp. 504507.
    6. 6)
      • 14. Petrov, N., Jordanov, I., Roe, J.: ‘Radar emitter signals recognition and classification with feedforward networks’, Proc. Comput. Sci., 2013, 22, pp. 11921200.
    7. 7)
      • 16. LeCun, Y., Bengio, Y., Hinton, G.: ‘Deep learning’, Nature, 2015, 521, (7553), pp. 436444.
    8. 8)
      • 17. Schmidhuber, J.: ‘Deep learning in neural networks: an overview’, Neural Netw., 2015, 61, pp. 85117.
    9. 9)
      • 3. Zak, J., Zavorka, P.: ‘The identification of radar signals by histogram description leads to cluster analysis processing’. 15th Int. Radar Symp. (IRS), Dresden, Germany, 2014, pp. 14.
    10. 10)
      • 19. Zhang, Z., Guan, X., He, Y.: ‘Study on radar emitter recognition signal based on rough sets and RBF neural network’. Proc. of 2009 Int. Conf. on Machine Learning and Cybernetics, Baoding, China, 2009, pp. 12251230.
    11. 11)
      • 18. Duan, P., Li, H.: ‘The radar target recognition research based on improved neural network algorithm’. 2014 Fifth Int. Conf. on IEEE Intelligent Systems Design and Engineering Applications (ISDEA), Hunan, China, 2014, pp. 10741077.
    12. 12)
      • 13. Montazer, G.A., Khoshniat, H., Fathi, V.: ‘Improvement of RBF neural networks using fuzzy-OSD algorithm in an online radar pulse classification system’, Appl. Soft Comput., 2013, 13, (9), pp. 38313838.
    13. 13)
      • 5. Shi, Y., Ji, H.: ‘Kernel canonical correlation analysis for specific radar emitter identification’, Electron. Lett., 2014, 50, (18), pp. 13181320.
    14. 14)
      • 21. Pavlyshenko, B.M.: ‘Linear, machine learning and probabilistic approaches for time series analysis’. IEEE First Int. Conf. on Data Stream Mining & Processing (DSMP), Lviv, Ukraine, 2016, pp. 377381.
    15. 15)
      • 7. Dudczyk, J., Kawalec, A.: ‘Identification of emitter sources in the aspect of their fractal features’, Bull. Pol. Acad. Sci., Tech. Sci., 2013, 61, (3), pp. 623628.
    16. 16)
      • 23. Chen, T., Guestrin, C.: ‘Xgboost: a scalable tree boosting system’. ACM SIGKDD Conf. on Knowledge Discovery and Data Mining, San Francisco, USA, 2016.
    17. 17)
      • 12. Bufler, T.D., Narayanan, R.M.: ‘Radar classification of indoor targets using support vector machines’, IET Radar Sonar Navig., 2016, 10, (8), pp. 14681476.
    18. 18)
      • 10. Clemente, C., Pallotta, L., DeMaio, A., et al: ‘A novel algorithm for radar classification based on doppler characteristics exploiting orthogonal pseudo-Zernike polynomials’, IEEE Trans. Aerosp. Electron. Syst., 2015, 51, (1), pp. 417430.
    19. 19)
      • 11. Yang, L., Zhang, S., Xiao, B.: ‘Radar emitter signal recognition based on time–frequency analysis’. IET Int. Radar Conf. 2013, Xi'an, China, 2013, pp. 14.
    20. 20)
      • 9. Yang, Z., Qiu, W., Sun, H., et al: ‘Robust radar emitter recognition based on the three-dimensional distribution feature and transfer learning’, Sensors, 2016, 16, (3), p. 289.
    21. 21)
      • 4. Dudczyk, J., Matuszewski, J., Wnuk, M.: ‘Applying the radiated emission to the emitter identification’. 15th Int. Conf. on Microwaves, Radar and Wireless Communications, Warsaw, Poland, 2004, pp. 431434.
    22. 22)
      • 20. Friedman, J.H.: ‘Greedy function approximation: a gradient boosting machine’, Ann. Stat., 2001, 29, (5), pp. 11891232.
    23. 23)
      • 6. Huang, G., Yuan, Y., Wang, X., et al: ‘Specific emitter identification based on nonlinear dynamical characteristics’, Can. J. Electr. Comput. Eng., 2016, 39, (1), pp. 3441.
    24. 24)
      • 1. Yang, Z., Wu, Z., Yin, Z., et al: ‘Hybrid radar emitter recognition based on rough k-means classifier and relevance vector machine’, Sensors, 2013, 13, (1), pp. 848864.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2016.0632
Loading

Related content

content/journals/10.1049/iet-rsn.2016.0632
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address